
dask-image Documentation
Release 0.5.0+0.gdf0a9b9.dirty

John Kirkham

Feb 01, 2021

CONTENTS

1 Features 1

2 Contents 3

3 Indices and tables 43

Python Module Index 45

Index 47

i

ii

CHAPTER

ONE

FEATURES

• Support focuses on Dask Arrays.

• Provides support for loading image files.

• Implements commonly used N-D filters.

• Includes a few N-D Fourier filters.

• Provides some functions for working with N-D label images.

• Supports a few N-D morphological operators.

1

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

2 Chapter 1. Features

CHAPTER

TWO

CONTENTS

2.1 Installation

2.1.1 Stable release

To install dask-image, run this command in your terminal:

$ conda install -c conda-forge dask-image

This is the preferred method to install dask-image, as it will always install the most recent stable release.

If you don’t have conda installed, you can download and install it with the Anaconda distribution here.

Alternatively, you can install dask-image with pip:

$ pip install dask-image

If you don’t have pip installed, this Python installation guide can guide you through the process. http://docs.
python-guide.org/en/latest/starting/installation/

2.1.2 From sources

The sources for dask-image can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/dask/dask-image

Or download the tarball:

$ curl -OL https://github.com/dask/dask-image/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://conda.io/en/latest/
https://www.anaconda.com/distribution/
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/dask/dask-image
https://github.com/dask/dask-image/tarball/master

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

2.2 Quickstart

2.2.1 Importing dask-image

Import dask image is with an underscore, like this example:

import dask_image.imread
import dask_image.ndfilters

2.2.2 Dask Examples

We highly recommend checking out the dask-image-quickstart.ipynb notebook (and any other dask-image example
notebooks) at the dask-examples repository. You can find the dask-image quickstart notebook in the applications
folder of this repository:

https://github.com/dask/dask-examples

The direct link to the notebook file is here:

https://github.com/dask/dask-examples/blob/master/applications/image-processing.ipynb

All the example notebooks are available to launch with mybinder and test out interactively.

2.2.3 An Even Quicker Start

You can read files stored on disk into a dask array by passing the filename, or regex matching multiple filenames into
imread().

filename_pattern = 'path/to/image-*.png'
images = dask_image.imread.imread(filename_pattern)

If your images are parts of a much larger image, dask can stack, concatenate or block chunks together: http://docs.
dask.org/en/latest/array-stack.html

Calling dask-image functions is also easy.

import dask_image.ndfilters
blurred_image = dask_image.ndfilters.gaussian_filter(images, sigma=10)

Many other functions can be applied to dask arrays. See the dask_array_documentation for more detail on general
array operations.

result = function_name(images)

2.2.4 Further Reading

Good places to start include:

• The dask-image API documentation: http://image.dask.org/en/latest/api.html

• The documentation on working with dask arrays: http://docs.dask.org/en/latest/array.html

4 Chapter 2. Contents

https://github.com/dask/dask-examples
https://github.com/dask/dask-examples/blob/master/applications/image-processing.ipynb
http://docs.dask.org/en/latest/array-stack.html
http://docs.dask.org/en/latest/array-stack.html
http://docs.dask.org/en/latest/array.html
http://image.dask.org/en/latest/api.html
http://docs.dask.org/en/latest/array.html

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

2.2.5 Talks and Slides

Here are some talks and slides that you can watch to learn dask-image:

• 2020, Genevieve Buckley’s talk at PyConAU and SciPy Japan

– Watch the talk in PyConAU

– Scipy Japan(:, :) Watch the talk at SciPy Japan (presentation in English, captions in Japanese)

– See the slides

• 2019, John Kirkham’s SciPy talk

– Watch the talk

– See the slides

2.3 Function Coverage

2.3.1 Coverage of dask-image vs scipy ndimage functions

This table shows which SciPy ndimage functions are supported by dask-image.

Function name SciPy ndimage dask-image
affine_transform X X
binary_closing X X
binary_dilation X X
binary_erosion X X
binary_fill_holes X
binary_hit_or_miss X
binary_opening X X
binary_propagation X
black_tophat X
center_of_mass X X
convolve X X
convolve1d X
correlate X X
correlate1d X
distance_transform_bfX
distance_transform_cdtX
distance_transform_edtX
extrema X X
find_objects X
fourier_ellipsoid X
fourier_gaussian X X
fourier_shift X X
fourier_uniform X X
gaussian_filter X X
gaussian_filter1d X
gaussian_gradient_magnitudeX X
gaussian_laplace X X
generate_binary_structureX

continues on next page

2.3. Function Coverage 5

https://www.youtube.com/watch?v=MpjgzNeISeI&list=PLs4CJRBY5F1IEFq-wumrBDRCu2EqkpY-R&index=2
https://www.youtube.com/watch?v=dP0m2iZX0PU
https://genevievebuckley.github.io/dask-image-talk-2020
https://www.youtube.com/watch?v=XGUS174vvLs
https://nbviewer.ipython.org/format/slides/github/jakirkham/scipy2019/blob/master/slides.ipynb#/

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Table 1 – continued from previous page
generic_filter X
generic_filter1d X X
generic_gradient_magnitudeX
generic_laplace X
geometric_transform X
grey_closing X
grey_dilation X
grey_erosion X
grey_opening X
histogram X X
imread X X
iterate_structure X
label X X
labeled_comprehensionX X
laplace X X
map_coordinates X
maximum X X
maximum_filter X X
maximum_filter1d X
maximum_position X X
mean X X
median X X
median_filter X X
minimum X X
minimum_filter X X
minimum_filter1d X
minimum_position X X
morphological_gradientX
morphological_laplaceX
percentile_filter X X
prewitt X X
rank_filter X X
rotate X
shift X
sobel X X
spline_filter X
spline_filter1d X
standard_deviation X X
sum_labels X X
uniform_filter X X
uniform_filter1d X
variance X X
watershed_ift X
white_tophat X
zoom X

6 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

2.4 API

2.4.1 dask_image package

Subpackages

dask_image.dispatch package

dask_image.imread package

dask_image.imread.imread(fname, nframes=1, *, arraytype='numpy')
Read image data into a Dask Array.

Provides a simple, fast mechanism to ingest image data into a Dask Array.

Parameters

• fname (str or pathlib.Path) – A glob like string that may match one or multiple
filenames.

• nframes (int, optional) – Number of the frames to include in each chunk (default:
1).

• arraytype (str, optional) – Array type for dask chunks. Available options:
“numpy”, “cupy”.

Returns array – A Dask Array representing the contents of all image files.

Return type dask.array.Array

dask_image.ndfilters package

dask_image.ndfilters.convolve(image, weights, mode='reflect', cval=0.0, origin=0)
Wrapped copy of “scipy.ndimage.filters.convolve”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional convolution.

The array is convolved with the given kernel.

Parameters

• image (array_like) – The image array.

• weights (array_like) – Array of weights, same number of dimensions as image

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the image array is extended beyond its
boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

2.4. API 7

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns result – The result of convolution of image with weights.

Return type ndarray

See also:

correlate Correlate an image with a kernel.

Notes

Each value in result is 𝐶𝑖 =
∑︀

𝑗 𝐼𝑖+𝑘−𝑗𝑊𝑗 , where W is the weights kernel, j is the N-D spatial index over 𝑊 , I
is the image and k is the coordinate of the center of W, specified by origin in the image parameters.

dask_image.ndfilters.correlate(image, weights, mode='reflect', cval=0.0, origin=0)
Wrapped copy of “scipy.ndimage.filters.correlate”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional correlation.

The array is correlated with the given kernel.

Parameters

• image (array_like) – The image array.

• weights (ndarray) – array of weights, same number of dimensions as image

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the image array is extended beyond its
boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

8 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns result – The result of correlation of image with weights.

Return type ndarray

See also:

convolve Convolve an image with a kernel.

dask_image.ndfilters.gaussian_filter(image, sigma, order=0, mode='reflect', cval=0.0, trun-
cate=4.0)

Wrapped copy of “scipy.ndimage.filters.gaussian_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Gaussian filter.

Parameters

• image (array_like) – The image array.

• sigma (scalar or sequence of scalars) – Standard deviation for Gaussian
kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence,
or as a single number, in which case it is equal for all axes.

• order (int or sequence of ints, optional) – The order of the filter along
each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds
to convolution with a Gaussian kernel. A positive order corresponds to convolution with that
derivative of a Gaussian.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• truncate (float) – Truncate the filter at this many standard deviations. Default is 4.0.

2.4. API 9

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Returns gaussian_filter – Returned array of same shape as image.

Return type ndarray

Notes

The multidimensional filter is implemented as a sequence of 1-D convolution filters. The intermediate arrays
are stored in the same data type as the output. Therefore, for output types with a limited precision, the results
may be imprecise because intermediate results may be stored with insufficient precision.

dask_image.ndfilters.gaussian_gradient_magnitude(image, sigma, mode='reflect',
cval=0.0, truncate=4.0, **kwargs)

Wrapped copy of “scipy.ndimage.filters.gaussian_gradient_magnitude”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional gradient magnitude using Gaussian derivatives.

Parameters

• image (array_like) – The image array.

• sigma (scalar or sequence of scalars) – The standard deviations of the
Gaussian filter are given for each axis as a sequence, or as a single number, in which case it
is equal for all axes.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• keyword arguments will be passed to gaussian_filter() (Extra) –

Returns gaussian_gradient_magnitude – Filtered array. Has the same shape as image.

Return type ndarray

dask_image.ndfilters.gaussian_laplace(image, sigma, mode='reflect', cval=0.0, truncate=4.0,
**kwargs)

Wrapped copy of “scipy.ndimage.filters.gaussian_laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

10 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Multidimensional Laplace filter using Gaussian second derivatives.

Parameters

• image (array_like) – The image array.

• sigma (scalar or sequence of scalars) – The standard deviations of the
Gaussian filter are given for each axis as a sequence, or as a single number, in which case it
is equal for all axes.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• keyword arguments will be passed to gaussian_filter() (Extra) –

dask_image.ndfilters.generic_filter(image, function, size=None, footprint=None,
mode='reflect', cval=0.0, origin=0, extra_arguments=(),
extra_keywords={})

Wrapped copy of “scipy.ndimage.filters.generic_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional filter using the given function.

At each element the provided function is called. The image values within the filter footprint at that element are
passed to the function as a 1-D array of double values.

Parameters

• image (array_like) – The image array.

• function ({callable, scipy.LowLevelCallable}) – Function to apply at
each element.

• size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is
given.

• footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element position, to define the image
to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function. Thus
size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the

2.4. API 11

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

number of dimensions of the image array, so that, if the image array is shape (10,10,10), and
size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the image array is extended beyond its
boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

• extra_arguments (sequence, optional) – Sequence of extra positional argu-
ments to pass to passed function.

• extra_keywords (dict, optional) – dict of extra keyword arguments to pass to
passed function.

Notes

This function also accepts low-level callback functions with one of the following signatures and wrapped in
scipy.LowLevelCallable:

int callback(double *buffer, npy_intp filter_size,
double *return_value, void *user_data)

int callback(double *buffer, intptr_t filter_size,
double *return_value, void *user_data)

The calling function iterates over the elements of the image and output arrays, calling the callback function
at each element. The elements within the footprint of the filter at the current element are passed through the
buffer parameter, and the number of elements within the footprint through filter_size. The calculated
value is returned in return_value. user_data is the data pointer provided to scipy.LowLevelCallable
as-is.

The callback function must return an integer error status that is zero if something went wrong and one otherwise.
If an error occurs, you should normally set the python error status with an informative message before returning,
otherwise a default error message is set by the calling function.

In addition, some other low-level function pointer specifications are accepted, but these are for backward com-
patibility only and should not be used in new code.

12 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

dask_image.ndfilters.laplace(image, mode='reflect', cval=0.0)
Wrapped copy of “scipy.ndimage.filters.laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

N-D Laplace filter based on approximate second derivatives.

Parameters

• image (array_like) – The image array.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

dask_image.ndfilters.maximum_filter(image, size=None, footprint=None, mode='reflect',
cval=0.0, origin=0)

Wrapped copy of “scipy.ndimage.filters.maximum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional maximum filter.

Parameters

• image (array_like) – The image array.

• size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is
given.

• footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element position, to define the image
to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function. Thus
size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the
number of dimensions of the image array, so that, if the image array is shape (10,10,10), and
size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be

2.4. API 13

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns maximum_filter – Filtered array. Has the same shape as image.

Return type ndarray

Notes

A sequence of modes (one per axis) is only supported when the footprint is separable. Otherwise, a single mode
string must be provided.

dask_image.ndfilters.median_filter(image, size=None, footprint=None, mode='reflect',
cval=0.0, origin=0)

Wrapped copy of “scipy.ndimage.filters.median_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional median filter.

Parameters

• image (array_like) – The image array.

• size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is
given.

• footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element position, to define the image
to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function. Thus
size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the
number of dimensions of the image array, so that, if the image array is shape (10,10,10), and
size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

14 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the image array is extended beyond its
boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns median_filter – Filtered array. Has the same shape as image.

Return type ndarray

dask_image.ndfilters.minimum_filter(image, size=None, footprint=None, mode='reflect',
cval=0.0, origin=0)

Wrapped copy of “scipy.ndimage.filters.minimum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional minimum filter.

Parameters

• image (array_like) – The image array.

• size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is
given.

• footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element position, to define the image
to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function. Thus
size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the
number of dimensions of the image array, so that, if the image array is shape (10,10,10), and
size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

2.4. API 15

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns minimum_filter – Filtered array. Has the same shape as image.

Return type ndarray

Notes

A sequence of modes (one per axis) is only supported when the footprint is separable. Otherwise, a single mode
string must be provided.

dask_image.ndfilters.percentile_filter(image, percentile, size=None, footprint=None,
mode='reflect', cval=0.0, origin=0)

Wrapped copy of “scipy.ndimage.filters.percentile_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional percentile filter.

Parameters

• image (array_like) – The image array.

• percentile (scalar) – The percentile parameter may be less then zero, i.e., percentile
= -20 equals percentile = 80

• size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is
given.

• footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element position, to define the image
to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function. Thus
size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the
number of dimensions of the image array, so that, if the image array is shape (10,10,10), and
size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the image array is extended beyond its
boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

16 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns percentile_filter – Filtered array. Has the same shape as image.

Return type ndarray

dask_image.ndfilters.prewitt(image, axis=- 1, mode='reflect', cval=0.0)
Wrapped copy of “scipy.ndimage.filters.prewitt”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Prewitt filter.

Parameters

• image (array_like) – The image array.

• axis (int, optional) – The axis of image along which to calculate. Default is -1.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

2.4. API 17

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

dask_image.ndfilters.rank_filter(image, rank, size=None, footprint=None, mode='reflect',
cval=0.0, origin=0)

Wrapped copy of “scipy.ndimage.filters.rank_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional rank filter.

Parameters

• image (array_like) – The image array.

• rank (int) – The rank parameter may be less then zero, i.e., rank = -1 indicates the largest
element.

• size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is
given.

• footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element position, to define the image
to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but
also which of the elements within this shape will get passed to the filter function. Thus
size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the
number of dimensions of the image array, so that, if the image array is shape (10,10,10), and
size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the image array is extended beyond its
boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns rank_filter – Filtered array. Has the same shape as image.

Return type ndarray

dask_image.ndfilters.sobel(image, axis=- 1, mode='reflect', cval=0.0)
Wrapped copy of “scipy.ndimage.filters.sobel”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

18 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Calculate a Sobel filter.

Parameters

• image (array_like) – The image array.

• axis (int, optional) – The axis of image along which to calculate. Default is -1.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

dask_image.ndfilters.threshold_local(image, block_size, method='gaussian', offset=0,
mode='reflect', param=None, cval=0)

Compute a threshold mask image based on local pixel neighborhood.

Also known as adaptive or dynamic thresholding[1]_. The threshold value is the weighted mean for the local
neighborhood of a pixel subtracted by a constant. Alternatively the threshold can be determined dynamically by
a given function, using the ‘generic’ method.

Parameters

• image ((N, M) dask ndarray) – Input image.

• block_size (int or list/tuple/array) – Size of pixel neighborhood which is
used to calculate the threshold value. (1) A single value for use in all dimensions or (2) A
tuple, list, or array with length equal to image.ndim

• method ({'generic', 'gaussian', 'mean', 'median'}, optional) –
Method used to determine adaptive threshold for local neighbourhood in weighted mean
image.

– ’generic’: use custom function (see param parameter)

– ’gaussian’: apply gaussian filter (see param parameter for custom sigma value)

– ’mean’: apply arithmetic mean filter

– ’median’: apply median rank filter

By default the ‘gaussian’ method is used.

• offset (float, optional) – Constant subtracted from weighted mean of neighbor-
hood to calculate the local threshold value. Default offset is 0.

2.4. API 19

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'},
optional) – The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to ‘constant’. Default is ‘reflect’.

• param ({int, function}, optional) – Either specify sigma for ‘gaussian’
method or function object for ‘generic’ method. This functions takes the flat array of lo-
cal neighbourhood as a single argument and returns the calculated threshold for the centre
pixel.

• cval (float, optional) – Value to fill past edges of input if mode is ‘constant’.

Returns threshold – Threshold image. All pixels in the input image higher than the corresponding
pixel in the threshold image are considered foreground.

Return type (N, M) dask ndarray

References

Examples

>>> import dask.array as da
>>> image = da.random.random((1000, 1000), chunks=(100, 100))
>>> result = threshold_local(image, 15, 'gaussian')

dask_image.ndfilters.uniform_filter(image, size=3, mode='reflect', cval=0.0, origin=0)
Wrapped copy of “scipy.ndimage.filters.uniform_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional uniform filter.

Parameters

• image (array_like) – The image array.

• size (int or sequence of ints, optional) – The sizes of the uniform filter
are given for each axis as a sequence, or as a single number, in which case the size is equal
for all axes.

• mode (str or sequence, optional) – The mode parameter determines how the
image array is extended when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array, different modes can be
specified along each axis. Default value is ‘reflect’. The valid values and their behavior is
as follows:

’reflect’ (d c b a | a b c d | d c b a) The image is extended by reflecting about the edge of
the last pixel.

’constant’ (k k k k | a b c d | k k k k) The image is extended by filling all values beyond the
edge with the same constant value, defined by the cval parameter.

’nearest’ (a a a a | a b c d | d d d d) The image is extended by replicating the last pixel.

’mirror’ (d c b | a b c d | c b a) The image is extended by reflecting about the center of the
last pixel.

’wrap’ (a b c d | a b c d | a b c d) The image is extended by wrapping around to the oppo-
site edge.

20 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’.
Default is 0.0.

• origin (int or sequence, optional) – Controls the placement of the filter on
the image array’s pixels. A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones to the right. By passing
a sequence of origins with length equal to the number of dimensions of the image array,
different shifts can be specified along each axis.

Returns uniform_filter – Filtered array. Has the same shape as image.

Return type ndarray

Notes

The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays are
stored in the same data type as the output. Therefore, for output types with a limited precision, the results may
be imprecise because intermediate results may be stored with insufficient precision.

dask_image.ndfourier package

dask_image.ndfourier.fourier_gaussian(image, sigma, n=- 1, axis=- 1)
Multi-dimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian kernel.

Parameters

• image (array_like) – The input image.

• sigma (float or sequence) – The sigma of the Gaussian kernel. If a float, sigma is
the same for all axes. If a sequence, sigma has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the image is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the image is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform.

Returns fourier_gaussian

Return type Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> image = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_gaussian(image, sigma=4)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)

2.4. API 21

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

dask_image.ndfourier.fourier_shift(image, shift, n=- 1, axis=- 1)
Multi-dimensional fourier shift filter.

The array is multiplied with the fourier transform of a shift operation.

Parameters

• image (array_like) – The input image.

• shift (float or sequence) – The size of the box used for filtering. If a float, shift
is the same for all axes. If a sequence, shift has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the image is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the image is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform.

Returns fourier_shift

Return type Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> import numpy.fft
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> image = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_shift(image, shift=200)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()

dask_image.ndfourier.fourier_uniform(image, size, n=- 1, axis=- 1)
Multi-dimensional uniform fourier filter.

The array is multiplied with the fourier transform of a box of given size.

Parameters

• image (array_like) – The input image.

• size (float or sequence) – The size of the box used for filtering. If a float, size is
the same for all axes. If a sequence, size has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the image is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the image is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform.

Returns fourier_uniform – The filtered image. If output is given as a parameter, None is returned.

Return type Dask Array

22 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> image = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_uniform(image, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()

dask_image.ndinterp package

dask_image.ndinterp.affine_transform(image, matrix, offset=None, output_shape=None, or-
der=1, output_chunks=None, **kwargs)

Apply an affine transform using Dask. For every output chunk, only the slice containing the relevant part
of the image is processed. Chunkwise processing is performed either using ndimage.affine_transform or cu-
pyx.scipy.ndimage.affine_transform, depending on the input type.

Notes

Differences to ndimage.affine_transformation: - currently, prefiltering is not supported

(affecting the output in case of interpolation order > 1)

• default order is 1

• modes ‘reflect’, ‘mirror’ and ‘wrap’ are not supported

Arguments equal to ndimage.affine_transformation, except for output_chunks.

Parameters

• image (array_like (Numpy Array, Cupy Array, Dask Array...)) –
The image array.

• matrix (array (ndim,), (ndim, ndim), (ndim, ndim+1) or
(ndim+1, ndim+1)) – Transformation matrix.

• offset (array (ndim,)) – Transformation offset.

• output_shape (array (ndim,), optional) – The size of the array to be re-
turned.

• order (int, optional) – The order of the spline interpolation. Note that for order>1
scipy’s affine_transform applies prefiltering, which is not yet supported and skipped in this
implementation.

• output_chunks (array (ndim,), optional) – The chunks of the output Dask
Array.

Returns affine_transform – A dask array representing the transformed output

Return type Dask Array

2.4. API 23

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

dask_image.ndmeasure package

dask_image.ndmeasure.area(image, label_image=None, index=None)
Find the area of specified subregions in an image.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), returns area of total image dimensions.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used. The index argument
only works when label_image is specified.

Returns area – Area of index selected regions from label_image.

Return type ndarray

Example

>>> import dask.array as da
>>> image = da.random.random((3, 3))
>>> label_image = da.from_array(

[[1, 1, 0],
[1, 0, 3],
[0, 7, 0]], chunks=(1, 3))

>>> # No labels given, returns area of total image dimensions
>>> area(image)
9

>>> # Combined area of all non-zero labels
>>> area(image, label_image).compute()
5

>>> # Areas of selected labels selected with the ``index`` keyword argument
>>> area(image, label_image, index=[0, 1, 2, 3]).compute()
array([4, 3, 0, 1], dtype=int64)

dask_image.ndmeasure.center_of_mass(image, label_image=None, index=None)
Find the center of mass over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns center_of_mass – Coordinates of centers-of-mass of image over the index selected re-
gions from label_image.

24 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Return type ndarray

dask_image.ndmeasure.extrema(image, label_image=None, index=None)
Find the min and max with positions over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns minimums, maximums, min_positions, max_positions – Values and coordinates of min-
imums and maximums in each feature.

Return type tuple of ndarrays

dask_image.ndmeasure.histogram(image, min, max, bins, label_image=None, index=None)
Find the histogram over an image at specified subregions.

Histogram calculates the frequency of values in an array within bins determined by min, max, and bins. The
label_image and index keywords can limit the scope of the histogram to specified sub-regions within the
array.

Parameters

• image (ndarray) – N-D image data

• min (int) – Minimum value of range of histogram bins.

• max (int) – Maximum value of range of histogram bins.

• bins (int) – Number of bins.

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns histogram – Histogram of image over the index selected regions from label_image.

Return type ndarray

dask_image.ndmeasure.label(image, structure=None)
Label features in an array.

Parameters

• image (ndarray) – An array-like object to be labeled. Any non-zero values in image
are counted as features and zero values are considered the background.

• structure (ndarray, optional) – A structuring element that defines feature con-
nections. structure must be symmetric. If no structuring element is provided, one is
automatically generated with a squared connectivity equal to one. That is, for a 2-D image
array, the default structuring element is:

2.4. API 25

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

[[0,1,0],
[1,1,1],
[0,1,0]]

Returns

• label (ndarray or int) – An integer ndarray where each unique feature in image has a
unique label in the returned array.

• num_features (int) – How many objects were found.

dask_image.ndmeasure.labeled_comprehension(image, label_image, index, func, out_dtype,
default, pass_positions=False)

Compute a function over an image at specified subregions.

Roughly equivalent to [func(image[labels == i]) for i in index].

Sequentially applies an arbitrary function (that works on array_like image) to subsets of an n-D image array
specified by label_image and index. The option exists to provide the function with positional parameters
as the second argument.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

• func (callable) – Python function to apply to label_image from image.

• out_dtype (dtype) – Dtype to use for result.

• default (int, float or None) – Default return value when a element of index
does not exist in label_image.

• pass_positions (bool, optional) – If True, pass linear indices to func as a sec-
ond argument. Default is False.

Returns result – Result of applying func on image over the index selected regions from
label_image.

Return type ndarray

dask_image.ndmeasure.maximum(image, label_image=None, index=None)
Find the maxima over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns maxima – Maxima of image over the index selected regions from label_image.

Return type ndarray

26 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

dask_image.ndmeasure.maximum_position(image, label_image=None, index=None)
Find the positions of maxima over an image at specified subregions.

For each region specified by label_image, the position of the maximum value of image within the region
is returned.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns maxima_positions – Maxima positions of image over the index selected regions from
label_image.

Return type ndarray

dask_image.ndmeasure.mean(image, label_image=None, index=None)
Find the mean over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns means – Mean of image over the index selected regions from label_image.

Return type ndarray

dask_image.ndmeasure.median(image, label_image=None, index=None)
Find the median over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns medians – Median of image over the index selected regions from label_image.

Return type ndarray

dask_image.ndmeasure.minimum(image, label_image=None, index=None)
Find the minima over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

2.4. API 27

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns minima – Minima of image over the index selected regions from label_image.

Return type ndarray

dask_image.ndmeasure.minimum_position(image, label_image=None, index=None)
Find the positions of minima over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns minima_positions – Maxima positions of image over the index selected regions from
label_image.

Return type ndarray

dask_image.ndmeasure.standard_deviation(image, label_image=None, index=None)
Find the standard deviation over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns standard_deviation – Standard deviation of image over the index selected regions from
label_image.

Return type ndarray

dask_image.ndmeasure.sum(image, label_image=None, index=None)
DEPRECATED FUNCTION. Use sum_labels instead.

dask_image.ndmeasure.sum_labels(image, label_image=None, index=None)
Find the sum of all pixels over specified subregions of an image.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

28 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns sum_lbl – Sum of image over the index selected regions from label_image.

Return type ndarray

dask_image.ndmeasure.variance(image, label_image=None, index=None)
Find the variance over an image at specified subregions.

Parameters

• image (ndarray) – N-D image data

• label_image (ndarray, optional) – Image features noted by integers. If None
(default), all values.

• index (int or sequence of ints, optional) – Labels to include in output. If
None (default), all values where non-zero label_image are used.

The index argument only works when label_image is specified.

Returns variance – Variance of image over the index selected regions from label_image.

Return type ndarray

dask_image.ndmorph package

dask_image.ndmorph.binary_closing(image, structure=None, iterations=1, origin=0)
Wrapped copy of “scipy.ndimage.morphology.binary_closing”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary closing with the given structuring element.

The closing of an image image by a structuring element is the erosion of the dilation of the image by the
structuring element.

Parameters

• image (array_like) – Binary array_like to be closed. Non-zero (True) elements form
the subset to be closed.

• structure (array_like, optional) – Structuring element used for the closing.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one (i.e., only nearest neighbors are connected
to the center, diagonally-connected elements are not considered neighbors).

• iterations (int, optional) – The dilation step of the closing, then the erosion
step are each repeated iterations times (one, by default). If iterations is less than 1, each
operations is repeated until the result does not change anymore. Only an integer of iterations
is accepted.

• origin (int or tuple of ints, optional) – Placement of the filter, by default
0.

• mask (array_like, optional) – If a mask is given, only those elements with a True
value at the corresponding mask element are modified at each iteration.

New in version 1.1.0.

2.4. API 29

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• border_value (int (cast to 0 or 1), optional) – Value at the border in
the output array.

New in version 1.1.0.

• brute_force (boolean, optional) – Memory condition: if False, only the pixels
whose value was changed in the last iteration are tracked as candidates to be updated in the
current iteration; if true al pixels are considered as candidates for update, regardless of what
happened in the previous iteration. False by default.

New in version 1.1.0.

Returns binary_closing – Closing of the image by the structuring element.

Return type ndarray of bools

See also:

grey_closing, binary_opening, binary_dilation, binary_erosion,
generate_binary_structure

Notes

Closing [1]_ is a mathematical morphology operation [2]_ that consists in the succession of a dilation and an
erosion of the image with the same structuring element. Closing therefore fills holes smaller than the structuring
element.

Together with opening (binary_opening), closing can be used for noise removal.

References

dask_image.ndmorph.binary_dilation(image, structure=None, iterations=1, mask=None, bor-
der_value=0, origin=0, brute_force=False)

Wrapped copy of “scipy.ndimage.morphology.binary_dilation”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary dilation with the given structuring element.

Parameters

• image (array_like) – Binary array_like to be dilated. Non-zero (True) elements form
the subset to be dilated.

• structure (array_like, optional) – Structuring element used for the dilation.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one.

• iterations (int, optional) – The dilation is repeated iterations times (one, by
default). If iterations is less than 1, the dilation is repeated until the result does not change
anymore. Only an integer of iterations is accepted.

• mask (array_like, optional) – If a mask is given, only those elements with a True
value at the corresponding mask element are modified at each iteration.

• origin (int or tuple of ints, optional) – Placement of the filter, by default
0.

30 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• brute_force (boolean, optional) – Memory condition: if False, only the pixels
whose value was changed in the last iteration are tracked as candidates to be updated (di-
lated) in the current iteration; if True all pixels are considered as candidates for dilation,
regardless of what happened in the previous iteration. False by default.

Returns binary_dilation – Dilation of the image by the structuring element.

Return type ndarray of bools

See also:

grey_dilation, binary_erosion, binary_closing, binary_opening,
generate_binary_structure

Notes

Dilation [1]_ is a mathematical morphology operation [2]_ that uses a structuring element for expanding the
shapes in an image. The binary dilation of an image by a structuring element is the locus of the points covered
by the structuring element, when its center lies within the non-zero points of the image.

References

dask_image.ndmorph.binary_erosion(image, structure=None, iterations=1, mask=None, bor-
der_value=0, origin=0, brute_force=False)

Wrapped copy of “scipy.ndimage.morphology.binary_erosion”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image processing.

Parameters

• image (array_like) – Binary image to be eroded. Non-zero (True) elements form the
subset to be eroded.

• structure (array_like, optional) – Structuring element used for the erosion.
Non-zero elements are considered True. If no structuring element is provided, an element is
generated with a square connectivity equal to one.

• iterations (int, optional) – The erosion is repeated iterations times (one, by
default). If iterations is less than 1, the erosion is repeated until the result does not change
anymore.

• mask (array_like, optional) – If a mask is given, only those elements with a True
value at the corresponding mask element are modified at each iteration.

• origin (int or tuple of ints, optional) – Placement of the filter, by default
0.

• brute_force (boolean, optional) – Memory condition: if False, only the pix-
els whose value was changed in the last iteration are tracked as candidates to be updated
(eroded) in the current iteration; if True all pixels are considered as candidates for erosion,
regardless of what happened in the previous iteration. False by default.

Returns binary_erosion – Erosion of the image by the structuring element.

Return type ndarray of bools

2.4. API 31

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

See also:

grey_erosion, binary_dilation, binary_closing, binary_opening,
generate_binary_structure

Notes

Erosion [1]_ is a mathematical morphology operation [2]_ that uses a structuring element for shrinking the
shapes in an image. The binary erosion of an image by a structuring element is the locus of the points where
a superimposition of the structuring element centered on the point is entirely contained in the set of non-zero
elements of the image.

References

dask_image.ndmorph.binary_opening(image, structure=None, iterations=1, origin=0)
Wrapped copy of “scipy.ndimage.morphology.binary_opening”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary opening with the given structuring element.

The opening of an image image by a structuring element is the dilation of the erosion of the image by the
structuring element.

Parameters

• image (array_like) – Binary array_like to be opened. Non-zero (True) elements form
the subset to be opened.

• structure (array_like, optional) – Structuring element used for the opening.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one (i.e., only nearest neighbors are connected
to the center, diagonally-connected elements are not considered neighbors).

• iterations (int, optional) – The erosion step of the opening, then the dilation
step are each repeated iterations times (one, by default). If iterations is less than 1, each
operation is repeated until the result does not change anymore. Only an integer of iterations
is accepted.

• origin (int or tuple of ints, optional) – Placement of the filter, by default
0.

• mask (array_like, optional) – If a mask is given, only those elements with a True
value at the corresponding mask element are modified at each iteration.

New in version 1.1.0.

• border_value (int (cast to 0 or 1), optional) – Value at the border in
the output array.

New in version 1.1.0.

• brute_force (boolean, optional) – Memory condition: if False, only the pixels
whose value was changed in the last iteration are tracked as candidates to be updated in the
current iteration; if true all pixels are considered as candidates for update, regardless of what
happened in the previous iteration. False by default.

New in version 1.1.0.

32 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Returns binary_opening – Opening of the image by the structuring element.

Return type ndarray of bools

See also:

grey_opening, binary_closing, binary_erosion, binary_dilation,
generate_binary_structure

Notes

Opening [1]_ is a mathematical morphology operation [2]_ that consists in the succession of an erosion and a
dilation of the image with the same structuring element. Opening, therefore, removes objects smaller than the
structuring element.

Together with closing (binary_closing), opening can be used for noise removal.

References

2.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

2.5.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/dask/dask-image/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

2.5. Contributing 33

https://github.com/dask/dask-image/issues

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

dask-image could always use more documentation, whether as part of the official dask-image docs, in docstrings, or
even on the web in blog posts, articles, and such.

To build the documentation locally and preview your changes, first set up the conda environment for building the
dask-image documentation:

$ conda env create -f environment_doc.yml
$ conda activate dask_image_doc_env

This conda environment contains dask-image and its dependencies, sphinx, and the dask-sphinx-theme.

Next, build the documentation with sphinx:

$ cd dask-image/docs
$ make html

Now you can preview the html documentation in your browser by opening the file: dask-
image/docs/_build/html/index.html

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dask/dask-image/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

2.5.2 Get Started!

Ready to contribute? Here’s how to set up dask-image for local development.

1. Fork the dask-image repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/dask-image.git

3. Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork
for local development (on Windows drop source). Replace “<some version>” with the Python version used for
testing.:

$ conda create -n dask-image-env python="<some version>"
$ source activate dask-image-env
$ python setup.py develop

4. Create a branch for local development:

34 Chapter 2. Contents

https://github.com/dask/dask-image/issues

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions:

$ flake8 dask_image tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

2.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for all supported Python versions. Check CIs and make sure that the tests pass for
all supported Python versions and platforms.

2.5.4 Running tests locally

To setup a local testing environment that matches the test environments we use for our continuous integration services,
you can use the .yml conda environment files included in the dask-image repository.

The test environment .yml files are included in hidden folders:

• Linux test environment files are found in .circleci/environments

• MacOS test environment files are found in .travis_support/environments

• Windows test environment files are found in .appveyor_support\environments

There is a separate environment file for each supported Python version.

Note: If you do not have Anaconda/miniconda installed, please follow these instructions.

We will use conda to create an environment from a file (conda env create -f
name-of-environment-file.yml).

For example, to make a Python 3.8 test environment on Linux, MacOS, or Windows, we would use the command
shown in the table below:

2.5. Contributing 35

https://docs.conda.io/projects/conda/en/latest/user-guide/install/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

Table 2: Creating a test environment for dask-image with Python 3.8
OS conda command
Linux conda env create -f .circleci/environments/tst_py38.

yml
MacOS conda env create -f .travis_support/environment/

tst_py38.yml
Windows conda env create -f .appveyor_support\environments\

tst_py38.yml

This command will create a new conda test environment for Python 3.8, called dask_image_py38_env with all
the dependencies.

Now you can activate your new testing environment with:

.. code-block:: console

$ conda activate dask_image_py38_env

Finally, install the development version of dask-image:

.. code-block:: console

$ pip install -e .

For local testing, please run pytest in the test environment:

.. code-block:: console

$ pytest

To run a subset of tests, for example all the tests for ndfourier:

$ pytest tests/test_dask_image/test_ndfourier

2.6 Credits

2.6.1 Development Lead

• John Kirkham @jakirkham

2.6.2 Contributors

See the full list of contributors here

36 Chapter 2. Contents

https://github.com/jakirkham
https://github.com/dask/dask-image/graphs/contributors

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

2.7 History

2.7.1 0.5.0 (2021-02-01)

We’re pleased to announce the release of dask-image 0.5.0!

Highlights

The biggest highlight of this release is our new affine transformation feature, contributed by Marvin Albert. The SciPy
Japan sprint in November 2020 led to many improvements, and I’d like to recognise the hard work by Tetsuo Koyama
and Kuya Takami. Special thanks go to everyone who joined us at the conference!

New Features

• Affine transformation feature added: from dask_image.ndinterp import affine_transform (#159)

• GPU support added for local_threshold with method=’mean’ (#158)

• Pathlib input now accepted for imread functions (#174)

Improvements

• Performance improvement for ‘imread’, we now use da.map_blocks instead of da.concatenate (#165)

Bug Fixes

• Fixed imread tests (add contiguous=True when saving test data with tifffile) (#164)

• FIXed scipy LooseVersion for sum_labels check (#176)

API Changes

• ‘sum’ is renamed to ‘sum_labels’ and a add deprecation warning added (#172)

Documentation improvements

• Add section Talks and Slides #163 (#169)

• Add link to SciPy Japan 2020 talk (#171)

• Add development guide to setup environment and run tests (#170)

• Update information in AUTHORS.rst (#167)

Maintenance

• Update dependencies in Read The Docs environment (#168)

6 authors added to this release (alphabetical)

• Fabian Chong - @feiming

• Genevieve Buckley - @GenevieveBuckley

• jakirkham - @jakirkham

• Kuya Takami - @ku-ya

• Marvin Albert - @m-albert

• Tetsuo Koyama - @tkoyama010

7 reviewers added to this release (alphabetical)

• Fabian Chong - @feiming

• Genevieve Buckley - @GenevieveBuckley

2.7. History 37

https://github.com/dask/dask-image/commits?author=feiming
https://github.com/dask/dask-image/commits?author=GenevieveBuckley
https://github.com/dask/dask-image/commits?author=jakirkham
https://github.com/dask/dask-image/commits?author=ku-ya
https://github.com/dask/dask-image/commits?author=m-albert
https://github.com/dask/dask-image/commits?author=tkoyama010
https://github.com/dask/dask-image/commits?author=feiming
https://github.com/dask/dask-image/commits?author=GenevieveBuckley

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• Gregory R. Lee - @grlee77

• jakirkham - @jakirkham

• Juan Nunez-Iglesias - @jni

• Marvin Albert - @m-albert

• Tetsuo Koyama - @tkoyama010

2.7.2 0.4.0 (2020-09-02)

We’re pleased to announce the release of dask-image 0.4.0!

Highlights

The major highlight of this release is support for cupy GPU arrays for dask-image subpackages imread and ndfil-
ters. Cupy version 7.7.0 or higher is required to use this functionality. GPU support for the remaining dask-image
subpackages (ndmorph, ndfourier, and ndmeasure) will be rolled out at a later date, beginning with ndmorph.

We also have a new function, threshold_local, similar to the scikit-image local threshold function.

Lastly, we’ve made more improvements to the user documentation, which includes work by new contributor @ab-
hisht51.

New Features

• GPU support for ndfilters & imread modules (#151)

• threshold_local function for dask-image ndfilters (#112)

Improvements

• Add function coverage table to the dask-image docs (#155)

• Developer documentation: release guide (#142)

• Use tifffile for testing instead of scikit-image (#145)

3 authors added to this release (alphabetical)

• Abhisht Singh - @abhisht51

• Genevieve Buckley - @GenevieveBuckley

• jakirkham - @jakirkham

2 reviewers added to this release (alphabetical)

• Genevieve Buckley - @GenevieveBuckley

• Juan Nunez-Iglesias - @jni

2.7.3 0.3.0 (2020-06-06)

We’re pleased to announce the release of dask-image 0.3.0!

Highlights

• Python 3.8 is now supported (#131)

• Support for Python 2.7 and 3.5 has been dropped (#119) (#131)

• We have a dask-image quickstart guide (#108), available from the dask examples page: https://examples.dask.
org/applications/image-processing.html

38 Chapter 2. Contents

https://github.com/dask/dask-image/commits?author=grlee77
https://github.com/dask/dask-image/commits?author=jakirkham
https://github.com/dask/dask-image/commits?author=jni
https://github.com/dask/dask-image/commits?author=m-albert
https://github.com/dask/dask-image/commits?author=tkoyama010
https://github.com/dask/dask-image/commits?author=abhisht51
https://github.com/dask/dask-image/commits?author=GenevieveBuckley
https://github.com/dask/dask-image/commits?author=jakirkham
https://github.com/dask/dask-image/commits?author=GenevieveBuckley
https://github.com/dask/dask-image/commits?author=jni
https://examples.dask.org/applications/image-processing.html
https://examples.dask.org/applications/image-processing.html

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

New Features

• Distributed labeling has been implemented (#94)

• Area measurement function added to dask_image.ndmeasure (#115)

Improvements

• Optimize out first where in label (#102)

Bug Fixes

• Bugfix in center_of_mass to correctly handle integer input arrays (#122)

• Test float cast in _norm_args (#105)

• Handle Dask’s renaming of atop to blockwise (#98)

API Changes

• Rename the input argument to image in the ndimage functions (#117)

• Rename labels in ndmeasure function arguments (#126)

Support

• Update installation instructions so conda is the preferred method (#88)

• Add Python 3.7 to Travis CI (#89)

• Add instructions for building docs with sphinx to CONTRIBUTING.rst (#90)

• Sort Python 3.7 requirements (#91)

• Use double equals for exact package versions (#92)

• Use flake8 (#93)

• Note Python 3.7 support (#95)

• Fix the Travis MacOS builds (update XCode to version 9.4 and use matplotlib ‘Agg’ backend) (#113)

7 authors added to this release (alphabetical)

• Amir Khalighi - @akhalighi

• Elliana May - @Mause

• Genevieve Buckley - @GenevieveBuckley

• jakirkham - @jakirkham

• Jaromir Latal - @jermenkoo

• Juan Nunez-Iglesias - @jni

• timbo8 - @timbo8

2 reviewers added to this release (alphabetical)

• Genevieve Buckley - @GenevieveBuckley

• jakirkham - @jakirkham

2.7. History 39

https://github.com/dask/dask-image/commits?author=akhalighi
https://github.com/dask/dask-image/commits?author=Mause
https://github.com/dask/dask-image/commits?author=GenevieveBuckley
https://github.com/dask/dask-image/commits?author=jakirkham
https://github.com/dask/dask-image/commits?author=jermenkoo
https://github.com/dask/dask-image/commits?author=jni
https://github.com/dask/dask-image/commits?author=timbo8
https://github.com/dask/dask-image/commits?author=GenevieveBuckley
https://github.com/dask/dask-image/commits?author=jakirkham

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

2.7.4 0.2.0 (2018-10-10)

• Construct separate label masks in labeled_comprehension (#82)

• Use full to construct 1-D NumPy array (#83)

• Use NumPy’s ndindex in labeled_comprehension (#81)

• Cleanup test_labeled_comprehension_struct (#80)

• Use 1-D structured array fields for position-based kernels in ndmeasure (#79)

• Rewrite center_of_mass using labeled_comprehension (#78)

• Adjust extrema’s internal structured type handling (#77)

• Test labeled_comprehension with object type (#76)

• Rewrite histogram to use labeled_comprehension (#75)

• Use labeled_comprehension directly in more function in ndmeasure (#74)

• Update mean’s variables to match other functions (#73)

• Consolidate summation in _ravel_shape_indices (#72)

• Update HISTORY for 0.1.2 release (#71)

• Bump dask-sphinx-theme to 1.1.0 (#70)

2.7.5 0.1.2 (2018-09-17)

• Ensure labeled_comprehension’s default is 1D. (#69)

• Bump dask-sphinx-theme to 1.0.5. (#68)

• Use nout=2 in ndmeasure’s label. (#67)

• Use custom kernel for extrema. (#61)

• Handle structured dtype in labeled_comprehension. (#66)

• Fixes for _unravel_index. (#65)

• Bump dask-sphinx-theme to 1.0.4. (#64)

• Unwrap some lines. (#63)

• Use dask-sphinx-theme. (#62)

• Refactor out _unravel_index function. (#60)

• Divide sigma by -2. (#59)

• Use Python 3’s definition of division in Python 2. (#58)

• Force dtype of prod in _ravel_shape_indices. (#57)

• Drop vendored compatibility code. (#54)

• Drop vendored copy of indices and uses thereof. (#56)

• Drop duplicate utility tests from ndmorph. (#55)

• Refactor utility module for imread. (#53)

• Reuse ndfilter utility function in ndmorph. (#52)

40 Chapter 2. Contents

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

• Cleanup freq_grid_i construction in _get_freq_grid. (#51)

• Use shared Python 2/3 compatibility module. (#50)

• Consolidate Python 2/3 compatibility code. (#49)

• Refactor Python 2/3 compatibility from imread. (#48)

• Perform 2 * pi first in _get_ang_freq_grid. (#47)

• Ensure J is negated first in fourier_shift. (#46)

• Breakout common changes in fourier_gaussian. (#45)

• Use conda-forge badge. (#44)

2.7.6 0.1.1 (2018-08-31)

• Fix a bug in an ndmeasure test of an internal function.

2.7.7 0.1.0 (2018-08-31)

• First release on PyPI.

• Pulls in content from dask-image org.

• Supports reading of image files into Dask.

• Provides basic N-D filters with options to extend.

• Provides a few N-D Fourier filters.

• Provides a few N-D morphological filters.

• Provides a few N-D measurement functions for label images.

• Has 100% line coverage in test suite.

2.7. History 41

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

42 Chapter 2. Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

43

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

44 Chapter 3. Indices and tables

PYTHON MODULE INDEX

d
dask_image, 7
dask_image.dispatch, 7
dask_image.imread, 7
dask_image.ndfilters, 7
dask_image.ndfourier, 21
dask_image.ndinterp, 23
dask_image.ndmeasure, 24
dask_image.ndmorph, 29

45

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

46 Python Module Index

INDEX

A
affine_transform() (in module

dask_image.ndinterp), 23
area() (in module dask_image.ndmeasure), 24

B
binary_closing() (in module

dask_image.ndmorph), 29
binary_dilation() (in module

dask_image.ndmorph), 30
binary_erosion() (in module

dask_image.ndmorph), 31
binary_opening() (in module

dask_image.ndmorph), 32

C
center_of_mass() (in module

dask_image.ndmeasure), 24
convolve() (in module dask_image.ndfilters), 7
correlate() (in module dask_image.ndfilters), 8

D
dask_image

module, 7
dask_image.dispatch

module, 7
dask_image.imread

module, 7
dask_image.ndfilters

module, 7
dask_image.ndfourier

module, 21
dask_image.ndinterp

module, 23
dask_image.ndmeasure

module, 24
dask_image.ndmorph

module, 29

E
extrema() (in module dask_image.ndmeasure), 25

F
fourier_gaussian() (in module

dask_image.ndfourier), 21
fourier_shift() (in module

dask_image.ndfourier), 21
fourier_uniform() (in module

dask_image.ndfourier), 22

G
gaussian_filter() (in module

dask_image.ndfilters), 9
gaussian_gradient_magnitude() (in module

dask_image.ndfilters), 10
gaussian_laplace() (in module

dask_image.ndfilters), 10
generic_filter() (in module

dask_image.ndfilters), 11

H
histogram() (in module dask_image.ndmeasure), 25

I
imread() (in module dask_image.imread), 7

L
label() (in module dask_image.ndmeasure), 25
labeled_comprehension() (in module

dask_image.ndmeasure), 26
laplace() (in module dask_image.ndfilters), 12

M
maximum() (in module dask_image.ndmeasure), 26
maximum_filter() (in module

dask_image.ndfilters), 13
maximum_position() (in module

dask_image.ndmeasure), 26
mean() (in module dask_image.ndmeasure), 27
median() (in module dask_image.ndmeasure), 27
median_filter() (in module dask_image.ndfilters),

14
minimum() (in module dask_image.ndmeasure), 27

47

dask-image Documentation, Release 0.5.0+0.gdf0a9b9.dirty

minimum_filter() (in module
dask_image.ndfilters), 15

minimum_position() (in module
dask_image.ndmeasure), 28

module
dask_image, 7
dask_image.dispatch, 7
dask_image.imread, 7
dask_image.ndfilters, 7
dask_image.ndfourier, 21
dask_image.ndinterp, 23
dask_image.ndmeasure, 24
dask_image.ndmorph, 29

P
percentile_filter() (in module

dask_image.ndfilters), 16
prewitt() (in module dask_image.ndfilters), 17

R
rank_filter() (in module dask_image.ndfilters), 17

S
sobel() (in module dask_image.ndfilters), 18
standard_deviation() (in module

dask_image.ndmeasure), 28
sum() (in module dask_image.ndmeasure), 28
sum_labels() (in module dask_image.ndmeasure), 28

T
threshold_local() (in module

dask_image.ndfilters), 19

U
uniform_filter() (in module

dask_image.ndfilters), 20

V
variance() (in module dask_image.ndmeasure), 29

48 Index

	Features
	Contents
	Indices and tables
	Python Module Index
	Index

