

Image processing with Dask Arrays

Features

	Support focuses on Dask Arrays.

	Provides support for loading image files.

	Implements commonly used N-D filters.

	Includes a few N-D Fourier filters.

	Provides some functions for working with N-D label images.

	Supports a few N-D morphological operators.

Contents

	Installation

	Quickstart

	Function Coverage

	API

	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install dask-image, run this command in your terminal:

$ conda install -c conda-forge dask-image

This is the preferred method to install dask-image, as it will always install
the most recent stable release.

If you don’t have conda [https://conda.io/en/latest/] installed, you can download and install it with the
Anaconda distribution here [https://www.anaconda.com/distribution/].

Alternatively, you can install dask-image with pip:

$ pip install dask-image

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide
can guide you through the process.

http://docs.python-guide.org/en/latest/starting/installation/

From sources

The sources for dask-image can be downloaded from the Github repo [https://github.com/dask/dask-image].

You can either clone the public repository:

$ git clone git://github.com/dask/dask-image

Or download the tarball [https://github.com/dask/dask-image/tarball/main]:

$ curl -OL https://github.com/dask/dask-image/tarball/main

Once you have a copy of the source, you can install it with:

$ python setup.py install

Quickstart

Importing dask-image

Import dask image is with an underscore, like this example:

import dask_image.imread
import dask_image.ndfilters

Dask Examples

We highly recommend checking out the dask-image-quickstart.ipynb notebook
(and any other dask-image example notebooks) at the dask-examples repository.
You can find the dask-image quickstart notebook in the applications folder
of this repository:

https://github.com/dask/dask-examples

The direct link to the notebook file is here:

https://github.com/dask/dask-examples/blob/main/applications/image-processing.ipynb

All the example notebooks are available to launch with
mybinder and test out interactively.

An Even Quicker Start

You can read files stored on disk into a dask array
by passing the filename, or regex matching multiple filenames
into imread().

filename_pattern = 'path/to/image-*.png'
images = dask_image.imread.imread(filename_pattern)

If your images are parts of a much larger image,
dask can stack, concatenate or block chunks together:
http://docs.dask.org/en/latest/array-stack.html

Calling dask-image functions is also easy.

import dask_image.ndfilters
blurred_image = dask_image.ndfilters.gaussian_filter(images, sigma=10)

Many other functions can be applied to dask arrays.
See the dask_array_documentation [http://docs.dask.org/en/latest/array.html] for more detail on general array operations.

result = function_name(images)

Further Reading

Good places to start include:

	The dask-image API documentation: http://image.dask.org/en/latest/api.html

	The documentation on working with dask arrays: http://docs.dask.org/en/latest/array.html

Talks and Slides

Here are some talks and slides that you can watch to learn dask-image:

	2020, Genevieve Buckley’s talk at PyConAU and SciPy Japan

	Watch the talk in PyConAU [https://www.youtube.com/watch?v=MpjgzNeISeI&list=PLs4CJRBY5F1IEFq-wumrBDRCu2EqkpY-R&index=2]

	Scipy Japanのトークを見る(プレゼンテーション:英語, 字幕:日本語) [https://www.youtube.com/watch?v=dP0m2iZX0PU] Watch the talk at SciPy Japan (presentation in English, captions in Japanese)

	See the slides [https://genevievebuckley.github.io/dask-image-talk-2020]

	2019, John Kirkham’s SciPy talk

	Watch the talk [https://www.youtube.com/watch?v=XGUS174vvLs]

	See the slides [https://nbviewer.ipython.org/format/slides/github/jakirkham/scipy2019/blob/master/slides.ipynb#/]

Function Coverage

Coverage of dask-image vs scipy ndimage functions

This table shows which SciPy ndimage functions are supported by dask-image.

	Function name

	SciPy ndimage

	dask-image

	affine_transform

	✓

	✓

	binary_closing

	✓

	✓

	binary_dilation

	✓

	✓

	binary_erosion

	✓

	✓

	binary_fill_holes

	✓

	

	binary_hit_or_miss

	✓

	

	binary_opening

	✓

	✓

	binary_propagation

	✓

	

	black_tophat

	✓

	

	center_of_mass

	✓

	✓

	convolve

	✓

	✓

	convolve1d

	✓

	

	correlate

	✓

	✓

	correlate1d

	✓

	

	distance_transform_bf

	✓

	

	distance_transform_cdt

	✓

	

	distance_transform_edt

	✓

	

	extrema

	✓

	✓

	find_objects

	✓

	✓

	fourier_ellipsoid

	✓

	

	fourier_gaussian

	✓

	✓

	fourier_shift

	✓

	✓

	fourier_uniform

	✓

	✓

	gaussian_filter

	✓

	✓

	gaussian_filter1d

	✓

	

	gaussian_gradient_magnitude

	✓

	✓

	gaussian_laplace

	✓

	✓

	generate_binary_structure

	✓

	

	generic_filter

	✓

	

	generic_filter1d

	✓

	✓

	generic_gradient_magnitude

	✓

	

	generic_laplace

	✓

	

	geometric_transform

	✓

	

	grey_closing

	✓

	

	grey_dilation

	✓

	

	grey_erosion

	✓

	

	grey_opening

	✓

	

	histogram

	✓

	✓

	imread

	✓

	✓

	iterate_structure

	✓

	

	label

	✓

	✓

	labeled_comprehension

	✓

	✓

	laplace

	✓

	✓

	map_coordinates

	✓

	

	maximum

	✓

	✓

	maximum_filter

	✓

	✓

	maximum_filter1d

	✓

	

	maximum_position

	✓

	✓

	mean

	✓

	✓

	median

	✓

	✓

	median_filter

	✓

	✓

	minimum

	✓

	✓

	minimum_filter

	✓

	✓

	minimum_filter1d

	✓

	

	minimum_position

	✓

	✓

	morphological_gradient

	✓

	

	morphological_laplace

	✓

	

	percentile_filter

	✓

	✓

	prewitt

	✓

	✓

	rank_filter

	✓

	✓

	rotate

	✓

	

	shift

	✓

	

	sobel

	✓

	✓

	spline_filter

	✓

	✓

	spline_filter1d

	✓

	✓

	standard_deviation

	✓

	✓

	sum_labels

	✓

	✓

	uniform_filter

	✓

	✓

	uniform_filter1d

	✓

	

	variance

	✓

	✓

	watershed_ift

	✓

	

	white_tophat

	✓

	

	zoom

	✓

	

API

	dask_image package
	Subpackages
	dask_image.dispatch package

	dask_image.imread package

	dask_image.ndfilters package

	dask_image.ndfourier package

	dask_image.ndinterp package

	dask_image.ndmeasure package

	dask_image.ndmorph package

dask_image package

Subpackages

	dask_image.dispatch package

	dask_image.imread package

	dask_image.ndfilters package

	dask_image.ndfourier package

	dask_image.ndinterp package

	dask_image.ndmeasure package

	dask_image.ndmorph package

dask_image.dispatch package

dask_image.imread package

	
dask_image.imread.imread(fname, nframes=1, *, arraytype='numpy')[source]

	Read image data into a Dask Array.

Provides a simple, fast mechanism to ingest image data into a
Dask Array.

	Parameters

	
	fname (str or pathlib.Path) – A glob like string that may match one or multiple filenames.

	nframes (int, optional) – Number of the frames to include in each chunk (default: 1).

	arraytype (str, optional) – Array type for dask chunks. Available options: “numpy”, “cupy”.

	Returns

	array – A Dask Array representing the contents of all image files.

	Return type

	dask.array.Array

dask_image.ndfilters package

	
dask_image.ndfilters.convolve(image, weights, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.convolve”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional convolution.

The array is convolved with the given kernel.

	Parameters

	
	image (array_like) – The image array.

	weights (array_like) – Array of weights, same number of dimensions as image

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the image array is extended
beyond its boundaries. Default is ‘reflect’. Behavior for each valid
value is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	result – The result of convolution of image with weights.

	Return type

	ndarray

See also

	correlate()
	Correlate an image with a kernel.

Notes

Each value in result is \(C_i = \sum_j{I_{i+k-j} W_j}\), where
W is the weights kernel,
j is the N-D spatial index over \(W\),
I is the image and k is the coordinate of the center of
W, specified by origin in the image parameters.

	
dask_image.ndfilters.correlate(image, weights, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.correlate”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional correlation.

The array is correlated with the given kernel.

	Parameters

	
	image (array_like) – The image array.

	weights (ndarray) – array of weights, same number of dimensions as image

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the image array is extended
beyond its boundaries. Default is ‘reflect’. Behavior for each valid
value is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	result – The result of correlation of image with weights.

	Return type

	ndarray

See also

	convolve()
	Convolve an image with a kernel.

	
dask_image.ndfilters.gaussian_filter(image, sigma, order=0, mode='reflect', cval=0.0, truncate=4.0)

	Wrapped copy of “scipy.ndimage.filters.gaussian_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Gaussian filter.

	Parameters

	
	image (array_like) – The image array.

	sigma (scalar or sequence of scalars) – Standard deviation for Gaussian kernel. The standard
deviations of the Gaussian filter are given for each axis as a
sequence, or as a single number, in which case it is equal for
all axes.

	order (int or sequence of ints, optional) – The order of the filter along each axis is given as a sequence
of integers, or as a single number. An order of 0 corresponds
to convolution with a Gaussian kernel. A positive order
corresponds to convolution with that derivative of a Gaussian.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	truncate (float) – Truncate the filter at this many standard deviations.
Default is 4.0.

	Returns

	gaussian_filter – Returned array of same shape as image.

	Return type

	ndarray

Notes

The multidimensional filter is implemented as a sequence of
1-D convolution filters. The intermediate arrays are
stored in the same data type as the output. Therefore, for output
types with a limited precision, the results may be imprecise
because intermediate results may be stored with insufficient
precision.

	
dask_image.ndfilters.gaussian_gradient_magnitude(image, sigma, mode='reflect', cval=0.0, truncate=4.0, **kwargs)

	Wrapped copy of “scipy.ndimage.filters.gaussian_gradient_magnitude”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional gradient magnitude using Gaussian derivatives.

	Parameters

	
	image (array_like) – The image array.

	sigma (scalar or sequence of scalars) – The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case
it is equal for all axes.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	keyword arguments will be passed to gaussian_filter() (Extra) –

	Returns

	gaussian_gradient_magnitude – Filtered array. Has the same shape as image.

	Return type

	ndarray

	
dask_image.ndfilters.gaussian_laplace(image, sigma, mode='reflect', cval=0.0, truncate=4.0, **kwargs)

	Wrapped copy of “scipy.ndimage.filters.gaussian_laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Laplace filter using Gaussian second derivatives.

	Parameters

	
	image (array_like) – The image array.

	sigma (scalar or sequence of scalars) – The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case
it is equal for all axes.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	keyword arguments will be passed to gaussian_filter() (Extra) –

	
dask_image.ndfilters.generic_filter(image, function, size=None, footprint=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords={})

	Wrapped copy of “scipy.ndimage.filters.generic_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional filter using the given function.

At each element the provided function is called. The image values
within the filter footprint at that element are passed to the function
as a 1-D array of double values.

	Parameters

	
	image (array_like) – The image array.

	function ({callable, scipy.LowLevelCallable}) – Function to apply at each element.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element
position, to define the image to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the image array, so that, if the image array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the image array is extended
beyond its boundaries. Default is ‘reflect’. Behavior for each valid
value is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	extra_arguments (sequence, optional) – Sequence of extra positional arguments to pass to passed function.

	extra_keywords (dict, optional) – dict of extra keyword arguments to pass to passed function.

Notes

This function also accepts low-level callback functions with one of
the following signatures and wrapped in scipy.LowLevelCallable:

int callback(double *buffer, npy_intp filter_size,
 double *return_value, void *user_data)
int callback(double *buffer, intptr_t filter_size,
 double *return_value, void *user_data)

The calling function iterates over the elements of the image and
output arrays, calling the callback function at each element. The
elements within the footprint of the filter at the current element are
passed through the buffer parameter, and the number of elements
within the footprint through filter_size. The calculated value is
returned in return_value. user_data is the data pointer provided
to scipy.LowLevelCallable as-is.

The callback function must return an integer error status that is zero
if something went wrong and one otherwise. If an error occurs, you should
normally set the python error status with an informative message
before returning, otherwise a default error message is set by the
calling function.

In addition, some other low-level function pointer specifications
are accepted, but these are for backward compatibility only and should
not be used in new code.

	
dask_image.ndfilters.laplace(image, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

N-D Laplace filter based on approximate second derivatives.

	Parameters

	
	image (array_like) – The image array.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	
dask_image.ndfilters.maximum_filter(image, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.maximum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional maximum filter.

	Parameters

	
	image (array_like) – The image array.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element
position, to define the image to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the image array, so that, if the image array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	maximum_filter – Filtered array. Has the same shape as image.

	Return type

	ndarray

Notes

A sequence of modes (one per axis) is only supported when the footprint is
separable. Otherwise, a single mode string must be provided.

	
dask_image.ndfilters.median_filter(image, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.median_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional median filter.

	Parameters

	
	image (array_like) – The image array.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element
position, to define the image to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the image array, so that, if the image array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the image array is extended
beyond its boundaries. Default is ‘reflect’. Behavior for each valid
value is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	median_filter – Filtered array. Has the same shape as image.

	Return type

	ndarray

	
dask_image.ndfilters.minimum_filter(image, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.minimum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional minimum filter.

	Parameters

	
	image (array_like) – The image array.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element
position, to define the image to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the image array, so that, if the image array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	minimum_filter – Filtered array. Has the same shape as image.

	Return type

	ndarray

Notes

A sequence of modes (one per axis) is only supported when the footprint is
separable. Otherwise, a single mode string must be provided.

	
dask_image.ndfilters.percentile_filter(image, percentile, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.percentile_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional percentile filter.

	Parameters

	
	image (array_like) – The image array.

	percentile (scalar) – The percentile parameter may be less then zero, i.e.,
percentile = -20 equals percentile = 80

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element
position, to define the image to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the image array, so that, if the image array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the image array is extended
beyond its boundaries. Default is ‘reflect’. Behavior for each valid
value is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	percentile_filter – Filtered array. Has the same shape as image.

	Return type

	ndarray

	
dask_image.ndfilters.prewitt(image, axis=- 1, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.prewitt”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Prewitt filter.

	Parameters

	
	image (array_like) – The image array.

	axis (int, optional) – The axis of image along which to calculate. Default is -1.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	
dask_image.ndfilters.rank_filter(image, rank, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.rank_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional rank filter.

	Parameters

	
	image (array_like) – The image array.

	rank (int) – The rank parameter may be less then zero, i.e., rank = -1
indicates the largest element.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the image array, at every element
position, to define the image to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the image array, so that, if the image array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the image array is extended
beyond its boundaries. Default is ‘reflect’. Behavior for each valid
value is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	rank_filter – Filtered array. Has the same shape as image.

	Return type

	ndarray

	
dask_image.ndfilters.sobel(image, axis=- 1, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.sobel”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Sobel filter.

	Parameters

	
	image (array_like) – The image array.

	axis (int, optional) – The axis of image along which to calculate. Default is -1.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	
dask_image.ndfilters.threshold_local(image, block_size, method='gaussian', offset=0, mode='reflect', param=None, cval=0)

	Compute a threshold mask image based on local pixel neighborhood.

Also known as adaptive or dynamic thresholding[1]_. The threshold value is
the weighted mean for the local neighborhood of a pixel subtracted by a
constant. Alternatively the threshold can be determined dynamically by a
given function, using the ‘generic’ method.

	Parameters

	
	image ((N, M) dask ndarray) – Input image.

	block_size (int or list/tuple/array) – Size of pixel neighborhood which is used to calculate the
threshold value.
(1) A single value for use in all dimensions or
(2) A tuple, list, or array with length equal to image.ndim

	method ({'generic', 'gaussian', 'mean', 'median'}, optional) – Method used to determine adaptive threshold for local neighbourhood in
weighted mean image.

	’generic’: use custom function (see param parameter)

	’gaussian’: apply gaussian filter (see param parameter for custom sigma value)

	’mean’: apply arithmetic mean filter

	’median’: apply median rank filter

By default the ‘gaussian’ method is used.

	offset (float, optional) – Constant subtracted from weighted mean of neighborhood to calculate
the local threshold value. Default offset is 0.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’.

	param ({int, function}, optional) – Either specify sigma for ‘gaussian’ method or function object for
‘generic’ method. This functions takes the flat array of local
neighbourhood as a single argument and returns the calculated
threshold for the centre pixel.

	cval (float, optional) – Value to fill past edges of input if mode is ‘constant’.

	Returns

	threshold – Threshold image. All pixels in the input image higher than the
corresponding pixel in the threshold image are considered foreground.

	Return type

	(N, M) dask ndarray

References

	1

	https://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold

Examples

>>> import dask.array as da
>>> image = da.random.random((1000, 1000), chunks=(100, 100))
>>> result = threshold_local(image, 15, 'gaussian')

	
dask_image.ndfilters.uniform_filter(image, size=3, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.uniform_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional uniform filter.

	Parameters

	
	image (array_like) – The image array.

	size (int or sequence of ints, optional) – The sizes of the uniform filter are given for each axis as a
sequence, or as a single number, in which case the size is
equal for all axes.

	mode (str or sequence, optional) – The mode parameter determines how the image array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the image array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)
	The image is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)
	The image is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)
	The image is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)
	The image is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)
	The image is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of image if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the image array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the image array, different shifts can
be specified along each axis.

	Returns

	uniform_filter – Filtered array. Has the same shape as image.

	Return type

	ndarray

Notes

The multidimensional filter is implemented as a sequence of
1-D uniform filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision.

dask_image.ndfourier package

	
dask_image.ndfourier.fourier_gaussian(image, sigma, n=- 1, axis=- 1)[source]

	Multi-dimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian
kernel.

	Parameters

	
	image (array_like) – The input image.

	sigma (float or sequence) – The sigma of the Gaussian kernel. If a float, sigma is the same for
all axes. If a sequence, sigma has to contain one value for each
axis.

	n (int, optional) – If n is negative (default), then the image is assumed to be the
result of a complex fft.
If n is larger than or equal to zero, the image is assumed to be the
result of a real fft, and n gives the length of the array before
transformation along the real transform direction.

	axis (int, optional) – The axis of the real transform.

	Returns

	fourier_gaussian

	Return type

	Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> image = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_gaussian(image, sigma=4)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)

	
dask_image.ndfourier.fourier_shift(image, shift, n=- 1, axis=- 1)[source]

	Multi-dimensional fourier shift filter.

The array is multiplied with the fourier transform of a shift operation.

	Parameters

	
	image (array_like) – The input image.

	shift (float or sequence) – The size of the box used for filtering.
If a float, shift is the same for all axes. If a sequence, shift
has to contain one value for each axis.

	n (int, optional) – If n is negative (default), then the image is assumed to be the
result of a complex fft.
If n is larger than or equal to zero, the image is assumed to be the
result of a real fft, and n gives the length of the array before
transformation along the real transform direction.

	axis (int, optional) – The axis of the real transform.

	Returns

	fourier_shift

	Return type

	Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> import numpy.fft
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> image = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_shift(image, shift=200)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()

	
dask_image.ndfourier.fourier_uniform(image, size, n=- 1, axis=- 1)[source]

	Multi-dimensional uniform fourier filter.

The array is multiplied with the fourier transform of a box of given
size.

	Parameters

	
	image (array_like) – The input image.

	size (float or sequence) – The size of the box used for filtering.
If a float, size is the same for all axes. If a sequence, size has
to contain one value for each axis.

	n (int, optional) – If n is negative (default), then the image is assumed to be the
result of a complex fft.
If n is larger than or equal to zero, the image is assumed to be the
result of a real fft, and n gives the length of the array before
transformation along the real transform direction.

	axis (int, optional) – The axis of the real transform.

	Returns

	fourier_uniform – The filtered image. If output is given as a parameter, None is
returned.

	Return type

	Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> image = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_uniform(image, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()

dask_image.ndinterp package

	
dask_image.ndinterp.affine_transform(image, matrix, offset=0.0, output_shape=None, order=1, output_chunks=None, **kwargs)[source]

	Apply an affine transform using Dask. For every
output chunk, only the slice containing the relevant part
of the image is processed. Chunkwise processing is performed
either using ndimage.affine_transform or
cupyx.scipy.ndimage.affine_transform, depending on the input type.

Notes

Differences to ndimage.affine_transformation:
- currently, prefiltering is not supported

(affecting the output in case of interpolation order > 1)

	default order is 1

	modes ‘reflect’, ‘mirror’ and ‘wrap’ are not supported

Arguments equal to ndimage.affine_transformation,
except for output_chunks.

	Parameters

	
	image (array_like (Numpy Array, Cupy Array, Dask Array...)) – The image array.

	matrix (array (ndim,), (ndim, ndim), (ndim, ndim+1) or (ndim+1, ndim+1)) – Transformation matrix.

	offset (float or sequence, optional) – The offset into the array where the transform is applied. If a float,
offset is the same for each axis. If a sequence, offset should
contain one value for each axis.

	output_shape (tuple of ints, optional) – The shape of the array to be returned.

	order (int, optional) – The order of the spline interpolation. Note that for order>1
scipy’s affine_transform applies prefiltering, which is not
yet supported and skipped in this implementation.

	output_chunks (tuple of ints, optional) – The shape of the chunks of the output Dask Array.

	Returns

	affine_transform – A dask array representing the transformed output

	Return type

	Dask Array

dask_image.ndmeasure package

	
dask_image.ndmeasure.area(image, label_image=None, index=None)[source]

	Find the area of specified subregions in an image.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers.
If None (default), returns area of total image dimensions.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.
The index argument only works when label_image is specified.

	Returns

	area – Area of index selected regions from label_image.

	Return type

	ndarray

Example

>>> import dask.array as da
>>> image = da.random.random((3, 3))
>>> label_image = da.from_array(
 [[1, 1, 0],
 [1, 0, 3],
 [0, 7, 0]], chunks=(1, 3))

>>> # No labels given, returns area of total image dimensions
>>> area(image)
9

>>> # Combined area of all non-zero labels
>>> area(image, label_image).compute()
5

>>> # Areas of selected labels selected with the ``index`` keyword argument
>>> area(image, label_image, index=[0, 1, 2, 3]).compute()
array([4, 3, 0, 1], dtype=int64)

	
dask_image.ndmeasure.center_of_mass(image, label_image=None, index=None)[source]

	Find the center of mass over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	center_of_mass – Coordinates of centers-of-mass of image over the index selected
regions from label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.extrema(image, label_image=None, index=None)[source]

	Find the min and max with positions over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	minimums, maximums, min_positions, max_positions – Values and coordinates of minimums and maximums in each feature.

	Return type

	tuple of ndarrays

	
dask_image.ndmeasure.histogram(image, min, max, bins, label_image=None, index=None)[source]

	Find the histogram over an image at specified subregions.

Histogram calculates the frequency of values in an array within bins
determined by min, max, and bins. The label_image and
index keywords can limit the scope of the histogram to specified
sub-regions within the array.

	Parameters

	
	image (ndarray) – N-D image data

	min (int) – Minimum value of range of histogram bins.

	max (int) – Maximum value of range of histogram bins.

	bins (int) – Number of bins.

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	histogram – Histogram of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.label(image, structure=None)[source]

	Label features in an array.

	Parameters

	
	image (ndarray) – An array-like object to be labeled. Any non-zero values in image
are counted as features and zero values are considered the background.

	structure (ndarray, optional) – A structuring element that defines feature connections.
structure must be symmetric. If no structuring element is
provided, one is automatically generated with a squared connectivity
equal to one. That is, for a 2-D image array, the default
structuring element is:

[[0,1,0],
 [1,1,1],
 [0,1,0]]

	Returns

	
	label (ndarray or int) – An integer ndarray where each unique feature in image has a unique
label in the returned array.

	num_features (int) – How many objects were found.

	
dask_image.ndmeasure.labeled_comprehension(image, label_image, index, func, out_dtype, default, pass_positions=False)[source]

	Compute a function over an image at specified subregions.

Roughly equivalent to [func(image[labels == i]) for i in index].

Sequentially applies an arbitrary function (that works on array_like image)
to subsets of an n-D image array specified by label_image and
index. The option exists to provide the function with positional
parameters as the second argument.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	func (callable) – Python function to apply to label_image from image.

	out_dtype (dtype) – Dtype to use for result.

	default (int, float or None) – Default return value when a element of index does not exist
in label_image.

	pass_positions (bool, optional) – If True, pass linear indices to func as a second argument.
Default is False.

	Returns

	result – Result of applying func on image over the index selected
regions from label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.maximum(image, label_image=None, index=None)[source]

	Find the maxima over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	maxima – Maxima of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.maximum_position(image, label_image=None, index=None)[source]

	Find the positions of maxima over an image at specified subregions.

For each region specified by label_image, the position of the maximum
value of image within the region is returned.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	maxima_positions – Maxima positions of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.mean(image, label_image=None, index=None)[source]

	Find the mean over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	means – Mean of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.median(image, label_image=None, index=None)[source]

	Find the median over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	medians – Median of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.minimum(image, label_image=None, index=None)[source]

	Find the minima over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	minima – Minima of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.minimum_position(image, label_image=None, index=None)[source]

	Find the positions of minima over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	minima_positions – Maxima positions of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.standard_deviation(image, label_image=None, index=None)[source]

	Find the standard deviation over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	standard_deviation – Standard deviation of image over the index selected regions
from label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.sum(image, label_image=None, index=None)[source]

	DEPRECATED FUNCTION. Use sum_labels instead.

	
dask_image.ndmeasure.sum_labels(image, label_image=None, index=None)[source]

	Find the sum of all pixels over specified subregions of an image.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	sum_lbl – Sum of image over the index selected regions from
label_image.

	Return type

	ndarray

	
dask_image.ndmeasure.variance(image, label_image=None, index=None)[source]

	Find the variance over an image at specified subregions.

	Parameters

	
	image (ndarray) – N-D image data

	label_image (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero label_image are used.

The index argument only works when label_image is specified.

	Returns

	variance – Variance of image over the index selected regions from
label_image.

	Return type

	ndarray

dask_image.ndmorph package

	
dask_image.ndmorph.binary_closing(image, structure=None, iterations=1, origin=0, mask=None, border_value=0, brute_force=False)[source]

	Wrapped copy of “scipy.ndimage.morphology.binary_closing”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary closing with the given structuring element.

The closing of an image image by a structuring element is the
erosion of the dilation of the image by the structuring element.

	Parameters

	
	image (array_like) – Binary array_like to be closed. Non-zero (True) elements form
the subset to be closed.

	structure (array_like, optional) – Structuring element used for the closing. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).

	iterations (int, optional) – The dilation step of the closing, then the erosion step are each
repeated iterations times (one, by default). If iterations is
less than 1, each operations is repeated until the result does
not change anymore. Only an integer of iterations is accepted.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

New in version 1.1.0.

	border_value (int (cast to 0 or 1), optional) – Value at the border in the output array.

New in version 1.1.0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the
current iteration; if true al pixels are considered as candidates for
update, regardless of what happened in the previous iteration.
False by default.

New in version 1.1.0.

	Returns

	binary_closing – Closing of the image by the structuring element.

	Return type

	ndarray of bools

See also

grey_closing(), binary_opening(), binary_dilation(), binary_erosion(), generate_binary_structure()

Notes

Closing [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of a dilation and an erosion of the
image with the same structuring element. Closing therefore fills
holes smaller than the structuring element.

Together with opening (binary_opening), closing can be used for
noise removal.

References

	1

	https://en.wikipedia.org/wiki/Closing_%28morphology%29

	2

	https://en.wikipedia.org/wiki/Mathematical_morphology

	
dask_image.ndmorph.binary_dilation(image, structure=None, iterations=1, mask=None, border_value=0, origin=0, brute_force=False)[source]

	Wrapped copy of “scipy.ndimage.morphology.binary_dilation”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary dilation with the given structuring element.

	Parameters

	
	image (array_like) – Binary array_like to be dilated. Non-zero (True) elements form
the subset to be dilated.

	structure (array_like, optional) – Structuring element used for the dilation. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one.

	iterations (int, optional) – The dilation is repeated iterations times (one, by default).
If iterations is less than 1, the dilation is repeated until the
result does not change anymore. Only an integer of iterations is
accepted.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (dilated)
in the current iteration; if True all pixels are considered as
candidates for dilation, regardless of what happened in the previous
iteration. False by default.

	Returns

	binary_dilation – Dilation of the image by the structuring element.

	Return type

	ndarray of bools

See also

grey_dilation(), binary_erosion(), binary_closing(), binary_opening(), generate_binary_structure()

Notes

Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for expanding the shapes in an image. The binary
dilation of an image by a structuring element is the locus of the points
covered by the structuring element, when its center lies within the
non-zero points of the image.

References

	1

	https://en.wikipedia.org/wiki/Dilation_%28morphology%29

	2

	https://en.wikipedia.org/wiki/Mathematical_morphology

	
dask_image.ndmorph.binary_erosion(image, structure=None, iterations=1, mask=None, border_value=0, origin=0, brute_force=False)[source]

	Wrapped copy of “scipy.ndimage.morphology.binary_erosion”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image
processing.

	Parameters

	
	image (array_like) – Binary image to be eroded. Non-zero (True) elements form
the subset to be eroded.

	structure (array_like, optional) – Structuring element used for the erosion. Non-zero elements are
considered True. If no structuring element is provided, an element
is generated with a square connectivity equal to one.

	iterations (int, optional) – The erosion is repeated iterations times (one, by default).
If iterations is less than 1, the erosion is repeated until the
result does not change anymore.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (eroded) in
the current iteration; if True all pixels are considered as candidates
for erosion, regardless of what happened in the previous iteration.
False by default.

	Returns

	binary_erosion – Erosion of the image by the structuring element.

	Return type

	ndarray of bools

See also

grey_erosion(), binary_dilation(), binary_closing(), binary_opening(), generate_binary_structure()

Notes

Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for shrinking the shapes in an image. The binary
erosion of an image by a structuring element is the locus of the points
where a superimposition of the structuring element centered on the point
is entirely contained in the set of non-zero elements of the image.

References

	1

	https://en.wikipedia.org/wiki/Erosion_%28morphology%29

	2

	https://en.wikipedia.org/wiki/Mathematical_morphology

	
dask_image.ndmorph.binary_opening(image, structure=None, iterations=1, origin=0, mask=None, border_value=0, brute_force=False)[source]

	Wrapped copy of “scipy.ndimage.morphology.binary_opening”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional binary opening with the given structuring element.

The opening of an image image by a structuring element is the
dilation of the erosion of the image by the structuring element.

	Parameters

	
	image (array_like) – Binary array_like to be opened. Non-zero (True) elements form
the subset to be opened.

	structure (array_like, optional) – Structuring element used for the opening. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).

	iterations (int, optional) – The erosion step of the opening, then the dilation step are each
repeated iterations times (one, by default). If iterations is
less than 1, each operation is repeated until the result does
not change anymore. Only an integer of iterations is accepted.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

New in version 1.1.0.

	border_value (int (cast to 0 or 1), optional) – Value at the border in the output array.

New in version 1.1.0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the
current iteration; if true all pixels are considered as candidates for
update, regardless of what happened in the previous iteration.
False by default.

New in version 1.1.0.

	Returns

	binary_opening – Opening of the image by the structuring element.

	Return type

	ndarray of bools

See also

grey_opening(), binary_closing(), binary_erosion(), binary_dilation(), generate_binary_structure()

Notes

Opening [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of an erosion and a dilation of the
image with the same structuring element. Opening, therefore, removes
objects smaller than the structuring element.

Together with closing (binary_closing), opening can be used for
noise removal.

References

	1

	https://en.wikipedia.org/wiki/Opening_%28morphology%29

	2

	https://en.wikipedia.org/wiki/Mathematical_morphology

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dask/dask-image/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

dask-image could always use more documentation, whether as part of the
official dask-image docs, in docstrings, or even on the web in blog posts,
articles, and such.

To build the documentation locally and preview your changes, first set up the
conda environment for building the dask-image documentation:

$ conda env create -f environment_doc.yml
$ conda activate dask_image_doc_env

This conda environment contains dask-image and its dependencies, sphinx,
and the dask-sphinx-theme.

Next, build the documentation with sphinx:

$ cd dask-image/docs
$ make html

Now you can preview the html documentation in your browser by opening the file:
dask-image/docs/_build/html/index.html

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dask/dask-image/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dask-image for local development.

	Fork the dask-image repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dask-image.git

	Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork for local development (on Windows drop source). Replace “<some version>” with the Python version used for testing.:

$ conda create -n dask-image-env python="<some version>"
$ source activate dask-image-env
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions:

$ flake8 dask_image tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for all supported Python versions. Check CIs
and make sure that the tests pass for all supported Python versions
and platforms.

Running tests locally

To setup a local testing environment that matches the test environments we use
for our continuous integration services, you can use the .yml
conda environment files included in the continuous_integration folder
in the dask-image repository.

There is a separate environment file for each supported Python version.

We will use conda to
create an environment from a file [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file]
(conda env create -f name-of-environment-file.yml).

Note

If you do not have Anaconda/miniconda installed, please follow
these instructions [https://docs.conda.io/projects/conda/en/latest/user-guide/install/].

$ conda env create -f continuous_integration/environment-latest.yml

This command will create a new conda test environment
called dask-image-testenv with all required dependencies.

Now you can activate your new testing environment with:

.. code-block:: console

$ conda activate dask-image-testenv

Finally, install the development version of dask-image:

.. code-block:: console

$ pip install -e .

For local testing, please run pytest in the test environment:

.. code-block:: console

$ pytest

To run a subset of tests, for example all the tests for ndfourier:

$ pytest tests/test_dask_image/test_ndfourier

Credits

Development Lead

	John Kirkham @jakirkham [https://github.com/jakirkham]

Contributors

See the full list of contributors here [https://github.com/dask/dask-image/graphs/contributors]

History

2021.12.0

We’re pleased to announce the release of dask-image 2021.12.0!

Highlights

The major highlights of this release include the introduction of new featurees for find_objects and spline filters.
We have also moved to using CalVer (calendar version numbers) to match the main Dask project.

New Features

	Find objects bounding boxes (#240)

	Add spline_filter and spline_filter1d (#215)

Improvements

	ENH: add remaining kwargs to binary_closing and binary_opening (#221)

	ndfourier: support n > 0 (for rfft) and improve performance (#222)

	affine_transform: increased shape of required input array slices (#216)

Bug Fixes

	BUG: add missing import of warnings in dask_image.ndmeasure (#224)

	Fix wrap bug in ndfilters convolve and correlate (#243)

	Upgrade for compatibility with latest dask release (#241)

Test infrastructure

	GitHub actions testing (#188)

	Set up gpuCI testing on PRs (#248)

	Remove RAPIDS_VER axis, bump CUDA_VER in gpuCI matrix (#249)

Documentation updates

	Code style cleanup (#227)

	Remove out of date email address, strip __author__ & __email__ (#225)

	Update release guide, Dask CalVer uses YYYY.MM.DD (#236)

	Update min python version in setup.py (#250)

	Use new Dask docs theme (#245)

	Docs: Add find_objects to the coverage table (#254)

Other Pull Requests

	Switch to CalVer (calendar versioning) (#233)

6 authors added to this release (alphabetical)

	anlavandier [https://github.com/dask/dask-image/commits?author=anlavandier] - @anlavandier

	Charles Blackmon-Luca [https://github.com/dask/dask-image/commits?author=charlesbluca] - @charlesbluca

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	Gregory R. Lee [https://github.com/dask/dask-image/commits?author=grlee77] - @grlee77

	Jacob Tomlinson [https://github.com/dask/dask-image/commits?author=jacobtomlinson] - @jacobtomlinson

	Marvin Albert [https://github.com/dask/dask-image/commits?author=m-albert] - @m-albert

6 reviewers added to this release (alphabetical)

	anlavandier [https://github.com/dask/dask-image/commits?author=anlavandier] - @anlavandier

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	Gregory R. Lee [https://github.com/dask/dask-image/commits?author=grlee77] - @grlee77

	Jacob Tomlinson [https://github.com/dask/dask-image/commits?author=jacobtomlinson] - @jacobtomlinson

	jakirkham [https://github.com/dask/dask-image/commits?author=jakirkham] - @jakirkham

	Marvin Albert [https://github.com/dask/dask-image/commits?author=m-albert] - @m-albert

0.6.0 (2021-05-06)

We’re pleased to announce the release of dask-image 0.6.0!

Highlights

The highlights of this release include GPU support for binary morphological
functions, and improvements to the performance of imread.

Cupy version 9.0.0 or higher is required for GPU support of the ndmorph subpackage.
Cupy version 7.7.0 or higher is required for GPU support of the ndfilters and imread subpackages.

New Features

	GPU support for ndmorph subpackage: binary morphological functions (#157)

Improvements

	Improve imread performance: reduced overhead of pim.open calls when reading from image sequence (#182)

Bug Fixes

	dask-image imread v0.5.0 not working with dask distributed Client & napari (#194)

	Not able to map actual image name with dask_image.imread (#200, fixed by #182)

	affine_transform: Remove inconsistencies with ndimage implementation #205

API Changes

	Add alias gaussian pointing to gaussian_filter (#193)

Other Pull Requests

	Change default branch from master to main (#185)

	Fix rst formatting in release_guide.rst (#186)

4 authors added to this release (alphabetical)

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	Julia Signell [https://github.com/dask/dask-image/commits?author=jsignell] - @jsignell

	KM Goh [https://github.com/dask/dask-image/commits?author=K-Monty] - @K-Monty

	Marvin Albert [https://github.com/dask/dask-image/commits?author=m-albert] - @m-albert

2 reviewers added to this release (alphabetical)

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	KM Goh [https://github.com/dask/dask-image/commits?author=K-Monty] - @K-Monty

0.5.0 (2021-02-01)

We’re pleased to announce the release of dask-image 0.5.0!

Highlights

The biggest highlight of this release is our new affine transformation feature, contributed by Marvin Albert.
The SciPy Japan sprint in November 2020 led to many improvements, and I’d like to recognise the hard work by Tetsuo Koyama and Kuya Takami.
Special thanks go to everyone who joined us at the conference!

New Features

	Affine transformation feature added: from dask_image.ndinterp import affine_transform (#159)

	GPU support added for local_threshold with method=’mean’ (#158)

	Pathlib input now accepted for imread functions (#174)

Improvements

	Performance improvement for ‘imread’, we now use da.map_blocks instead of da.concatenate (#165)

Bug Fixes

	Fixed imread tests (add contiguous=True when saving test data with tifffile) (#164)

	FIXed scipy LooseVersion for sum_labels check (#176)

API Changes

	‘sum’ is renamed to ‘sum_labels’ and a add deprecation warning added (#172)

Documentation improvements

	Add section Talks and Slides #163 (#169)

	Add link to SciPy Japan 2020 talk (#171)

	Add development guide to setup environment and run tests (#170)

	Update information in AUTHORS.rst (#167)

Maintenance

	Update dependencies in Read The Docs environment (#168)

6 authors added to this release (alphabetical)

	Fabian Chong [https://github.com/dask/dask-image/commits?author=feiming] - @feiming

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	jakirkham [https://github.com/dask/dask-image/commits?author=jakirkham] - @jakirkham

	Kuya Takami [https://github.com/dask/dask-image/commits?author=ku-ya] - @ku-ya

	Marvin Albert [https://github.com/dask/dask-image/commits?author=m-albert] - @m-albert

	Tetsuo Koyama [https://github.com/dask/dask-image/commits?author=tkoyama010] - @tkoyama010

7 reviewers added to this release (alphabetical)

	Fabian Chong [https://github.com/dask/dask-image/commits?author=feiming] - @feiming

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	Gregory R. Lee [https://github.com/dask/dask-image/commits?author=grlee77] - @grlee77

	jakirkham [https://github.com/dask/dask-image/commits?author=jakirkham] - @jakirkham

	Juan Nunez-Iglesias [https://github.com/dask/dask-image/commits?author=jni] - @jni

	Marvin Albert [https://github.com/dask/dask-image/commits?author=m-albert] - @m-albert

	Tetsuo Koyama [https://github.com/dask/dask-image/commits?author=tkoyama010] - @tkoyama010

0.4.0 (2020-09-02)

We’re pleased to announce the release of dask-image 0.4.0!

Highlights

The major highlight of this release is support for cupy GPU arrays for dask-image subpackages imread and ndfilters.
Cupy version 7.7.0 or higher is required to use this functionality.
GPU support for the remaining dask-image subpackages (ndmorph, ndfourier, and ndmeasure) will be rolled out at a later date, beginning with ndmorph.

We also have a new function, threshold_local, similar to the scikit-image local threshold function.

Lastly, we’ve made more improvements to the user documentation, which includes work by new contributor @abhisht51.

New Features

	GPU support for ndfilters & imread modules (#151)

	threshold_local function for dask-image ndfilters (#112)

Improvements

	Add function coverage table to the dask-image docs (#155)

	Developer documentation: release guide (#142)

	Use tifffile for testing instead of scikit-image (#145)

3 authors added to this release (alphabetical)

	Abhisht Singh [https://github.com/dask/dask-image/commits?author=abhisht51] - @abhisht51

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	jakirkham [https://github.com/dask/dask-image/commits?author=jakirkham] - @jakirkham

2 reviewers added to this release (alphabetical)

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	Juan Nunez-Iglesias [https://github.com/dask/dask-image/commits?author=jni] - @jni

0.3.0 (2020-06-06)

We’re pleased to announce the release of dask-image 0.3.0!

Highlights

	Python 3.8 is now supported (#131)

	Support for Python 2.7 and 3.5 has been dropped (#119) (#131)

	We have a dask-image quickstart guide (#108), available from the dask examples page: https://examples.dask.org/applications/image-processing.html

New Features

	Distributed labeling has been implemented (#94)

	Area measurement function added to dask_image.ndmeasure (#115)

Improvements

	Optimize out first where in label (#102)

Bug Fixes

	Bugfix in center_of_mass to correctly handle integer input arrays (#122)

	Test float cast in _norm_args (#105)

	Handle Dask’s renaming of atop to blockwise (#98)

API Changes

	Rename the input argument to image in the ndimage functions (#117)

	Rename labels in ndmeasure function arguments (#126)

Support

	Update installation instructions so conda is the preferred method (#88)

	Add Python 3.7 to Travis CI (#89)

	Add instructions for building docs with sphinx to CONTRIBUTING.rst (#90)

	Sort Python 3.7 requirements (#91)

	Use double equals for exact package versions (#92)

	Use flake8 (#93)

	Note Python 3.7 support (#95)

	Fix the Travis MacOS builds (update XCode to version 9.4 and use matplotlib ‘Agg’ backend) (#113)

7 authors added to this release (alphabetical)

	Amir Khalighi [https://github.com/dask/dask-image/commits?author=akhalighi] - @akhalighi

	Elliana May [https://github.com/dask/dask-image/commits?author=Mause] - @Mause

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	jakirkham [https://github.com/dask/dask-image/commits?author=jakirkham] - @jakirkham

	Jaromir Latal [https://github.com/dask/dask-image/commits?author=jermenkoo] - @jermenkoo

	Juan Nunez-Iglesias [https://github.com/dask/dask-image/commits?author=jni] - @jni

	timbo8 [https://github.com/dask/dask-image/commits?author=timbo8] - @timbo8

2 reviewers added to this release (alphabetical)

	Genevieve Buckley [https://github.com/dask/dask-image/commits?author=GenevieveBuckley] - @GenevieveBuckley

	jakirkham [https://github.com/dask/dask-image/commits?author=jakirkham] - @jakirkham

0.2.0 (2018-10-10)

	Construct separate label masks in labeled_comprehension (#82)

	Use full to construct 1-D NumPy array (#83)

	Use NumPy’s ndindex in labeled_comprehension (#81)

	Cleanup test_labeled_comprehension_struct (#80)

	Use 1-D structured array fields for position-based kernels in ndmeasure (#79)

	Rewrite center_of_mass using labeled_comprehension (#78)

	Adjust extrema’s internal structured type handling (#77)

	Test labeled_comprehension with object type (#76)

	Rewrite histogram to use labeled_comprehension (#75)

	Use labeled_comprehension directly in more function in ndmeasure (#74)

	Update mean’s variables to match other functions (#73)

	Consolidate summation in _ravel_shape_indices (#72)

	Update HISTORY for 0.1.2 release (#71)

	Bump dask-sphinx-theme to 1.1.0 (#70)

0.1.2 (2018-09-17)

	Ensure labeled_comprehension’s default is 1D. (#69)

	Bump dask-sphinx-theme to 1.0.5. (#68)

	Use nout=2 in ndmeasure’s label. (#67)

	Use custom kernel for extrema. (#61)

	Handle structured dtype in labeled_comprehension. (#66)

	Fixes for _unravel_index. (#65)

	Bump dask-sphinx-theme to 1.0.4. (#64)

	Unwrap some lines. (#63)

	Use dask-sphinx-theme. (#62)

	Refactor out _unravel_index function. (#60)

	Divide sigma by -2. (#59)

	Use Python 3’s definition of division in Python 2. (#58)

	Force dtype of prod in _ravel_shape_indices. (#57)

	Drop vendored compatibility code. (#54)

	Drop vendored copy of indices and uses thereof. (#56)

	Drop duplicate utility tests from ndmorph. (#55)

	Refactor utility module for imread. (#53)

	Reuse ndfilter utility function in ndmorph. (#52)

	Cleanup freq_grid_i construction in _get_freq_grid. (#51)

	Use shared Python 2/3 compatibility module. (#50)

	Consolidate Python 2/3 compatibility code. (#49)

	Refactor Python 2/3 compatibility from imread. (#48)

	Perform 2 * pi first in _get_ang_freq_grid. (#47)

	Ensure J is negated first in fourier_shift. (#46)

	Breakout common changes in fourier_gaussian. (#45)

	Use conda-forge badge. (#44)

0.1.1 (2018-08-31)

	Fix a bug in an ndmeasure test of an internal function.

0.1.0 (2018-08-31)

	First release on PyPI.

	Pulls in content from dask-image org.

	Supports reading of image files into Dask.

	Provides basic N-D filters with options to extend.

	Provides a few N-D Fourier filters.

	Provides a few N-D morphological filters.

	Provides a few N-D measurement functions for label images.

	Has 100% line coverage in test suite.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dask_image	

 	
 	
 dask_image.dispatch	

 	
 	
 dask_image.imread	

 	
 	
 dask_image.ndfilters	

 	
 	
 dask_image.ndfourier	

 	
 	
 dask_image.ndinterp	

 	
 	
 dask_image.ndmeasure	

 	
 	
 dask_image.ndmorph	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	affine_transform() (in module dask_image.ndinterp)

 	
 	area() (in module dask_image.ndmeasure)

B

 	
 	binary_closing() (in module dask_image.ndmorph)

 	binary_dilation() (in module dask_image.ndmorph)

 	
 	binary_erosion() (in module dask_image.ndmorph)

 	binary_opening() (in module dask_image.ndmorph)

C

 	
 	center_of_mass() (in module dask_image.ndmeasure)

 	
 	convolve() (in module dask_image.ndfilters)

 	correlate() (in module dask_image.ndfilters)

D

 	
 	
 dask_image

 	module

 	
 dask_image.dispatch

 	module

 	
 dask_image.imread

 	module

 	
 dask_image.ndfilters

 	module

 	
 	
 dask_image.ndfourier

 	module

 	
 dask_image.ndinterp

 	module

 	
 dask_image.ndmeasure

 	module

 	
 dask_image.ndmorph

 	module

E

 	
 	extrema() (in module dask_image.ndmeasure)

F

 	
 	fourier_gaussian() (in module dask_image.ndfourier)

 	
 	fourier_shift() (in module dask_image.ndfourier)

 	fourier_uniform() (in module dask_image.ndfourier)

G

 	
 	gaussian_filter() (in module dask_image.ndfilters)

 	gaussian_gradient_magnitude() (in module dask_image.ndfilters)

 	
 	gaussian_laplace() (in module dask_image.ndfilters)

 	generic_filter() (in module dask_image.ndfilters)

H

 	
 	histogram() (in module dask_image.ndmeasure)

I

 	
 	imread() (in module dask_image.imread)

L

 	
 	label() (in module dask_image.ndmeasure)

 	
 	labeled_comprehension() (in module dask_image.ndmeasure)

 	laplace() (in module dask_image.ndfilters)

M

 	
 	maximum() (in module dask_image.ndmeasure)

 	maximum_filter() (in module dask_image.ndfilters)

 	maximum_position() (in module dask_image.ndmeasure)

 	mean() (in module dask_image.ndmeasure)

 	median() (in module dask_image.ndmeasure)

 	median_filter() (in module dask_image.ndfilters)

 	minimum() (in module dask_image.ndmeasure)

 	minimum_filter() (in module dask_image.ndfilters)

 	minimum_position() (in module dask_image.ndmeasure)

 	
 	
 module

 	dask_image

 	dask_image.dispatch

 	dask_image.imread

 	dask_image.ndfilters

 	dask_image.ndfourier

 	dask_image.ndinterp

 	dask_image.ndmeasure

 	dask_image.ndmorph

P

 	
 	percentile_filter() (in module dask_image.ndfilters)

 	
 	prewitt() (in module dask_image.ndfilters)

R

 	
 	rank_filter() (in module dask_image.ndfilters)

S

 	
 	sobel() (in module dask_image.ndfilters)

 	standard_deviation() (in module dask_image.ndmeasure)

 	
 	sum() (in module dask_image.ndmeasure)

 	sum_labels() (in module dask_image.ndmeasure)

T

 	
 	threshold_local() (in module dask_image.ndfilters)

U

 	
 	uniform_filter() (in module dask_image.ndfilters)

V

 	
 	variance() (in module dask_image.ndmeasure)

 All modules for which code is available

	dask_image.imread

	dask_image.ndfilters

	dask_image.ndfourier

	dask_image.ndinterp

	dask_image.ndmeasure

	dask_image.ndmorph

 Source code for dask_image.imread

-*- coding: utf-8 -*-
import glob
import numbers
import warnings

import dask.array as da
import numpy as np
import pims

from . import _utils

[docs]def imread(fname, nframes=1, *, arraytype="numpy"):
 """
 Read image data into a Dask Array.

 Provides a simple, fast mechanism to ingest image data into a
 Dask Array.

 Parameters

 fname : str or pathlib.Path
 A glob like string that may match one or multiple filenames.
 nframes : int, optional
 Number of the frames to include in each chunk (default: 1).
 arraytype : str, optional
 Array type for dask chunks. Available options: "numpy", "cupy".

 Returns

 array : dask.array.Array
 A Dask Array representing the contents of all image files.
 """

 sfname = str(fname)
 if not isinstance(nframes, numbers.Integral):
 raise ValueError("`nframes` must be an integer.")
 if (nframes != -1) and not (nframes > 0):
 raise ValueError("`nframes` must be greater than zero.")

 if arraytype == "numpy":
 arrayfunc = np.asanyarray
 elif arraytype == "cupy": # pragma: no cover
 import cupy
 arrayfunc = cupy.asanyarray

 with pims.open(sfname) as imgs:
 shape = (len(imgs),) + imgs.frame_shape
 dtype = np.dtype(imgs.pixel_type)

 if nframes == -1:
 nframes = shape[0]

 if nframes > shape[0]:
 warnings.warn(
 "`nframes` larger than number of frames in file."
 " Will truncate to number of frames in file.",
 RuntimeWarning
)
 elif shape[0] % nframes != 0:
 warnings.warn(
 "`nframes` does not nicely divide number of frames in file."
 " Last chunk will contain the remainder.",
 RuntimeWarning
)

 # place source filenames into dask array
 filenames = sorted(glob.glob(sfname)) # pims also does this
 if len(filenames) > 1:
 ar = da.from_array(filenames, chunks=(nframes,))
 multiple_files = True
 else:
 ar = da.from_array(filenames * shape[0], chunks=(nframes,))
 multiple_files = False

 # read in data using encoded filenames
 a = ar.map_blocks(
 _map_read_frame,
 chunks=da.core.normalize_chunks(
 (nframes,) + shape[1:], shape),
 multiple_files=multiple_files,
 new_axis=list(range(1, len(shape))),
 arrayfunc=arrayfunc,
 meta=arrayfunc([]).astype(dtype), # meta overwrites `dtype` argument
)

 return a

def _map_read_frame(x, multiple_files, block_info=None, **kwargs):

 fn = x[0] # get filename from input chunk

 if multiple_files:
 i, j = 0, 1
 else:
 i, j = block_info[None]['array-location'][0]

 return _utils._read_frame(fn=fn, i=slice(i, j), **kwargs)

 Source code for dask_image.ndfilters

-*- coding: utf-8 -*-

__all__ = [
 "convolve",
 "correlate",
 "laplace",
 "prewitt",
 "sobel",
 "gaussian_filter",
 "gaussian_gradient_magnitude",
 "gaussian_laplace",
 "generic_filter",
 "minimum_filter",
 "median_filter",
 "maximum_filter",
 "rank_filter",
 "percentile_filter",
 "uniform_filter",
 "threshold_local",
]

from ._conv import convolve, correlate
from ._diff import laplace
from ._edge import prewitt, sobel
from ._gaussian import (gaussian_filter, gaussian_gradient_magnitude,
 gaussian_laplace)
from ._generic import generic_filter
from ._order import (maximum_filter, median_filter, minimum_filter,
 percentile_filter, rank_filter)
from ._smooth import uniform_filter
from ._threshold import threshold_local

convolve.__module__ = __name__
correlate.__module__ = __name__

laplace.__module__ = __name__

prewitt.__module__ = __name__
sobel.__module__ = __name__

gaussian_filter.__module__ = __name__
gaussian_gradient_magnitude.__module__ = __name__
gaussian_laplace.__module__ = __name__

generic_filter.__module__ = __name__

minimum_filter.__module__ = __name__
median_filter.__module__ = __name__
maximum_filter.__module__ = __name__
rank_filter.__module__ = __name__
percentile_filter.__module__ = __name__

uniform_filter.__module__ = __name__

threshold_local.__module__ = __name__

 Source code for dask_image.ndfourier

-*- coding: utf-8 -*-
import numbers

import dask.array as da

from . import _utils

__all__ = [
 "fourier_gaussian",
 "fourier_shift",
 "fourier_uniform",
]

[docs]def fourier_gaussian(image, sigma, n=-1, axis=-1):
 """
 Multi-dimensional Gaussian fourier filter.

 The array is multiplied with the fourier transform of a Gaussian
 kernel.

 Parameters

 image : array_like
 The input image.
 sigma : float or sequence
 The sigma of the Gaussian kernel. If a float, `sigma` is the same for
 all axes. If a sequence, `sigma` has to contain one value for each
 axis.
 n : int, optional
 If `n` is negative (default), then the image is assumed to be the
 result of a complex fft.
 If `n` is larger than or equal to zero, the image is assumed to be the
 result of a real fft, and `n` gives the length of the array before
 transformation along the real transform direction.
 axis : int, optional
 The axis of the real transform.

 Returns

 fourier_gaussian : Dask Array

 Examples

 >>> from scipy import ndimage, misc
 >>> import numpy.fft
 >>> import matplotlib.pyplot as plt
 >>> fig, (ax1, ax2) = plt.subplots(1, 2)
 >>> plt.gray() # show the filtered result in grayscale
 >>> ascent = misc.ascent()
 >>> image = numpy.fft.fft2(ascent)
 >>> result = ndimage.fourier_gaussian(image, sigma=4)
 >>> result = numpy.fft.ifft2(result)
 >>> ax1.imshow(ascent)
 """

 # Validate and normalize arguments
 image, sigma, n, axis = _utils._norm_args(image, sigma, n=n, axis=axis)

 # Compute frequencies
 ang_freq_grid = _utils._get_ang_freq_grid(
 image.shape,
 chunks=image.chunks,
 n=n,
 axis=axis,
 dtype=sigma.dtype
)

 # Compute Fourier transformed Gaussian
 result = image.copy()
 scale = (sigma ** 2) / -2

 for ax, f in enumerate(ang_freq_grid):
 f *= f
 gaussian = da.exp(scale[ax] * f)
 gaussian = _utils._reshape_nd(gaussian, ndim=image.ndim, axis=ax)
 result *= gaussian

 return result

[docs]def fourier_shift(image, shift, n=-1, axis=-1):
 """
 Multi-dimensional fourier shift filter.

 The array is multiplied with the fourier transform of a shift operation.

 Parameters

 image : array_like
 The input image.
 shift : float or sequence
 The size of the box used for filtering.
 If a float, `shift` is the same for all axes. If a sequence, `shift`
 has to contain one value for each axis.
 n : int, optional
 If `n` is negative (default), then the image is assumed to be the
 result of a complex fft.
 If `n` is larger than or equal to zero, the image is assumed to be the
 result of a real fft, and `n` gives the length of the array before
 transformation along the real transform direction.
 axis : int, optional
 The axis of the real transform.

 Returns

 fourier_shift : Dask Array

 Examples

 >>> from scipy import ndimage, misc
 >>> import matplotlib.pyplot as plt
 >>> import numpy.fft
 >>> fig, (ax1, ax2) = plt.subplots(1, 2)
 >>> plt.gray() # show the filtered result in grayscale
 >>> ascent = misc.ascent()
 >>> image = numpy.fft.fft2(ascent)
 >>> result = ndimage.fourier_shift(image, shift=200)
 >>> result = numpy.fft.ifft2(result)
 >>> ax1.imshow(ascent)
 >>> ax2.imshow(result.real) # the imaginary part is an artifact
 >>> plt.show()
 """

 if issubclass(image.dtype.type, numbers.Real):
 image = image.astype(complex)

 # Validate and normalize arguments
 image, shift, n, axis = _utils._norm_args(image, shift, n=n, axis=axis)

 # Constants with type converted
 J = image.dtype.type(1j)

 # Get the grid of frequencies
 ang_freq_grid = _utils._get_ang_freq_grid(
 image.shape,
 chunks=image.chunks,
 n=n,
 axis=axis,
 dtype=shift.dtype
)

 # Apply shift
 result = image.copy()
 for ax, f in enumerate(ang_freq_grid):
 phase_shift = da.exp((-J) * shift[ax] * f)
 phase_shift = _utils._reshape_nd(phase_shift, ndim=image.ndim, axis=ax)
 result *= phase_shift

 return result

[docs]def fourier_uniform(image, size, n=-1, axis=-1):
 """
 Multi-dimensional uniform fourier filter.

 The array is multiplied with the fourier transform of a box of given
 size.

 Parameters

 image : array_like
 The input image.
 size : float or sequence
 The size of the box used for filtering.
 If a float, `size` is the same for all axes. If a sequence, `size` has
 to contain one value for each axis.
 n : int, optional
 If `n` is negative (default), then the image is assumed to be the
 result of a complex fft.
 If `n` is larger than or equal to zero, the image is assumed to be the
 result of a real fft, and `n` gives the length of the array before
 transformation along the real transform direction.
 axis : int, optional
 The axis of the real transform.

 Returns

 fourier_uniform : Dask Array
 The filtered image. If `output` is given as a parameter, None is
 returned.

 Examples

 >>> from scipy import ndimage, misc
 >>> import numpy.fft
 >>> import matplotlib.pyplot as plt
 >>> fig, (ax1, ax2) = plt.subplots(1, 2)
 >>> plt.gray() # show the filtered result in grayscale
 >>> ascent = misc.ascent()
 >>> image = numpy.fft.fft2(ascent)
 >>> result = ndimage.fourier_uniform(image, size=20)
 >>> result = numpy.fft.ifft2(result)
 >>> ax1.imshow(ascent)
 >>> ax2.imshow(result.real) # the imaginary part is an artifact
 >>> plt.show()
 """

 # Validate and normalize arguments
 image, size, n, axis = _utils._norm_args(image, size, n=n, axis=axis)

 # Get the grid of frequencies
 freq_grid = _utils._get_freq_grid(
 image.shape,
 chunks=image.chunks,
 n=n,
 axis=axis,
 dtype=size.dtype
)

 # Compute uniform filter
 result = image.copy()
 for ax, f in enumerate(freq_grid):
 uniform = da.sinc(size[ax] * f)
 uniform = _utils._reshape_nd(uniform, ndim=image.ndim, axis=ax)
 result *= uniform

 return result

 Source code for dask_image.ndinterp

-*- coding: utf-8 -*-

import functools
import math
from itertools import product
import warnings

import dask.array as da
import numpy as np
from dask.base import tokenize
from dask.highlevelgraph import HighLevelGraph
import scipy
from scipy.ndimage import affine_transform as ndimage_affine_transform

from ..dispatch._dispatch_ndinterp import (
 dispatch_affine_transform,
 dispatch_asarray,
 dispatch_spline_filter,
 dispatch_spline_filter1d,
)
from ..ndfilters._utils import _get_depth_boundary

from ..dispatch._dispatch_ndinterp import (dispatch_affine_transform,
 dispatch_asarray)

__all__ = [
 "affine_transform",
]

[docs]def affine_transform(
 image,
 matrix,
 offset=0.0,
 output_shape=None,
 order=1,
 output_chunks=None,
 **kwargs
):
 """Apply an affine transform using Dask. For every
 output chunk, only the slice containing the relevant part
 of the image is processed. Chunkwise processing is performed
 either using `ndimage.affine_transform` or
 `cupyx.scipy.ndimage.affine_transform`, depending on the input type.

 Notes

 Differences to `ndimage.affine_transformation`:
 - currently, prefiltering is not supported
 (affecting the output in case of interpolation `order > 1`)
 - default order is 1
 - modes 'reflect', 'mirror' and 'wrap' are not supported

 Arguments equal to `ndimage.affine_transformation`,
 except for `output_chunks`.

 Parameters

 image : array_like (Numpy Array, Cupy Array, Dask Array...)
 The image array.
 matrix : array (ndim,), (ndim, ndim), (ndim, ndim+1) or (ndim+1, ndim+1)
 Transformation matrix.
 offset : float or sequence, optional
 The offset into the array where the transform is applied. If a float,
 `offset` is the same for each axis. If a sequence, `offset` should
 contain one value for each axis.
 output_shape : tuple of ints, optional
 The shape of the array to be returned.
 order : int, optional
 The order of the spline interpolation. Note that for order>1
 scipy's affine_transform applies prefiltering, which is not
 yet supported and skipped in this implementation.
 output_chunks : tuple of ints, optional
 The shape of the chunks of the output Dask Array.

 Returns

 affine_transform : Dask Array
 A dask array representing the transformed output

 """

 if not type(image) == da.core.Array:
 image = da.from_array(image)

 if output_shape is None:
 output_shape = image.shape

 if output_chunks is None:
 output_chunks = image.shape

 # Perform test run to ensure parameter validity.
 ndimage_affine_transform(np.zeros([0] * image.ndim),
 matrix,
 offset)

 # Make sure parameters contained in matrix and offset
 # are not overlapping, i.e. that the offset is valid as
 # it needs to be modified for each chunk.
 # Further parameter checks are performed directly by
 # `ndimage.affine_transform`.

 matrix = np.asarray(matrix)
 offset = np.asarray(offset).squeeze()

 # these lines were copied and adapted from `ndimage.affine_transform`
 if (matrix.ndim == 2 and matrix.shape[1] == image.ndim + 1 and
 (matrix.shape[0] in [image.ndim, image.ndim + 1])):

 # assume input is homogeneous coordinate transformation matrix
 offset = matrix[:image.ndim, image.ndim]
 matrix = matrix[:image.ndim, :image.ndim]

 cval = kwargs.pop('cval', 0)
 mode = kwargs.pop('mode', 'constant')
 prefilter = kwargs.pop('prefilter', False)

 supported_modes = ['constant', 'nearest']
 if scipy.__version__ > np.lib.NumpyVersion('1.6.0'):
 supported_modes += ['grid-constant']
 if mode in ['wrap', 'reflect', 'mirror', 'grid-mirror', 'grid-wrap']:
 raise NotImplementedError(
 f"Mode {mode} is not currently supported. It must be one of "
 f"{supported_modes}.")

 # process kwargs
 if prefilter and order > 1:
 # prefilter is not yet supported for all modes
 if mode in ['nearest', 'grid-constant']:
 raise NotImplementedError(
 f"order > 1 with mode='{mode}' is not supported. Currently "
 f"prefilter is only supported with mode='constant'."
)
 image = spline_filter(image, order, output=np.float64,
 mode=mode)

 n = image.ndim
 image_shape = image.shape

 # calculate output array properties
 normalized_chunks = da.core.normalize_chunks(output_chunks,
 tuple(output_shape))
 block_indices = product(*(range(len(bds)) for bds in normalized_chunks))
 block_offsets = [np.cumsum((0,) + bds[:-1]) for bds in normalized_chunks]

 # use dispatching mechanism to determine backend
 affine_transform_method = dispatch_affine_transform(image)
 asarray_method = dispatch_asarray(image)

 # construct dask graph for output array
 # using unique and deterministic identifier
 output_name = 'affine_transform-' + tokenize(image, matrix, offset,
 output_shape, output_chunks,
 kwargs)
 output_layer = {}
 rel_images = []
 for ib, block_ind in enumerate(block_indices):

 out_chunk_shape = [normalized_chunks[dim][block_ind[dim]]
 for dim in range(n)]
 out_chunk_offset = [block_offsets[dim][block_ind[dim]]
 for dim in range(n)]

 out_chunk_edges = np.array([i for i in np.ndindex(tuple([2] * n))])\
 * np.array(out_chunk_shape) + np.array(out_chunk_offset)

 # map output chunk edges onto input image coordinates
 # to define the input region relevant for the current chunk
 if matrix.ndim == 1 and len(matrix) == image.ndim:
 rel_image_edges = matrix * out_chunk_edges + offset
 else:
 rel_image_edges = np.dot(matrix, out_chunk_edges.T).T + offset

 rel_image_i = np.min(rel_image_edges, 0)
 rel_image_f = np.max(rel_image_edges, 0)

 # Calculate edge coordinates required for the footprint of the
 # spline kernel according to
 # https://github.com/scipy/scipy/blob/9c0d08d7d11fc33311a96d2ac3ad73c8f6e3df00/scipy/ndimage/src/ni_interpolation.c#L412-L419 # noqa: E501
 # Also see this discussion:
 # https://github.com/dask/dask-image/issues/24#issuecomment-706165593 # noqa: E501
 for dim in range(n):

 if order % 2 == 0:
 rel_image_i[dim] += 0.5
 rel_image_f[dim] += 0.5

 rel_image_i[dim] = np.floor(rel_image_i[dim]) - order // 2
 rel_image_f[dim] = np.floor(rel_image_f[dim]) - order // 2 + order

 if order == 0: # required for consistency with scipy.ndimage
 rel_image_i[dim] -= 1

 # clip image coordinates to image extent
 for dim, s in zip(range(n), image_shape):
 rel_image_i[dim] = np.clip(rel_image_i[dim], 0, s - 1)
 rel_image_f[dim] = np.clip(rel_image_f[dim], 0, s - 1)

 rel_image_slice = tuple([slice(int(rel_image_i[dim]),
 int(rel_image_f[dim]) + 2)
 for dim in range(n)])

 rel_image = image[rel_image_slice]

 """Block comment for future developers explaining how `offset` is
 transformed into `offset_prime` for each output chunk.
 Modify offset to point into cropped image.
 y = Mx + o
 Coordinate substitution:
 y' = y - y0(min_coord_px)
 x' = x - x0(chunk_offset)
 Then:
 y' = Mx' + o + Mx0 - y0
 M' = M
 o' = o + Mx0 - y0
 """

 offset_prime = offset + np.dot(matrix, out_chunk_offset) - rel_image_i

 output_layer[(output_name,) + block_ind] = (
 affine_transform_method,
 (da.core.concatenate3, rel_image.__dask_keys__()),
 asarray_method(matrix),
 offset_prime,
 tuple(out_chunk_shape), # output_shape
 None, # out
 order,
 mode,
 cval,
 False # prefilter
)

 rel_images.append(rel_image)

 graph = HighLevelGraph.from_collections(output_name, output_layer,
 dependencies=[image] + rel_images)

 meta = dispatch_asarray(image)([0]).astype(image.dtype)

 transformed = da.Array(graph,
 output_name,
 shape=tuple(output_shape),
 # chunks=output_chunks,
 chunks=normalized_chunks,
 meta=meta)

 return transformed

magnitude of the maximum filter pole for each order
(obtained from scipy/ndimage/src/ni_splines.c)
_maximum_pole = {
 2: 0.171572875253809902396622551580603843,
 3: 0.267949192431122706472553658494127633,
 4: 0.361341225900220177092212841325675255,
 5: 0.430575347099973791851434783493520110,
}

def _get_default_depth(order, tol=1e-8):
 """Determine the approximate depth needed for a given tolerance.

 Here depth is chosen as the smallest integer such that ``|p| ** n < tol``
 where `|p|` is the magnitude of the largest pole in the IIR filter.
 """
 return math.ceil(np.log(tol) / np.log(_maximum_pole[order]))

def spline_filter(
 image,
 order=3,
 output=np.float64,
 mode='mirror',
 output_chunks=None,
 *,
 depth=None,
 **kwargs
):

 if not type(image) == da.core.Array:
 image = da.from_array(image)

 # use dispatching mechanism to determine backend
 spline_filter_method = dispatch_spline_filter(image)

 try:
 dtype = np.dtype(output)
 except TypeError: # pragma: no cover
 raise TypeError(# pragma: no cover
 "Could not coerce the provided output to a dtype. "
 "Passing array to output is not currently supported."
)

 if depth is None:
 depth = _get_default_depth(order)

 if mode == 'wrap':
 raise NotImplementedError(
 "mode='wrap' is unsupported. It is recommended to use 'grid-wrap' "
 "instead."
)

 # Note: depths of 12 and 24 give results matching SciPy to approximately
 # single and double precision accuracy, respectively.
 boundary = "periodic" if mode == 'grid-wrap' else "none"
 depth, boundary = _get_depth_boundary(image.ndim, depth, boundary)

 # cannot pass a func kwarg named "output" to map_overlap
 spline_filter_method = functools.partial(spline_filter_method,
 output=dtype)

 result = image.map_overlap(
 spline_filter_method,
 depth=depth,
 boundary=boundary,
 dtype=dtype,
 meta=image._meta,
 # spline_filter kwargs
 order=order,
 mode=mode,
)

 return result

def spline_filter1d(
 image,
 order=3,
 axis=-1,
 output=np.float64,
 mode='mirror',
 output_chunks=None,
 *,
 depth=None,
 **kwargs
):

 if not type(image) == da.core.Array:
 image = da.from_array(image)

 # use dispatching mechanism to determine backend
 spline_filter1d_method = dispatch_spline_filter1d(image)

 try:
 dtype = np.dtype(output)
 except TypeError: # pragma: no cover
 raise TypeError(# pragma: no cover
 "Could not coerce the provided output to a dtype. "
 "Passing array to output is not currently supported."
)

 if depth is None:
 depth = _get_default_depth(order)

 # use depth 0 on all axes except the filtered axis
 if not np.isscalar(depth):
 raise ValueError("depth must be a scalar value")
 depths = [0] * image.ndim
 depths[axis] = depth

 if mode == 'wrap':
 raise NotImplementedError(
 "mode='wrap' is unsupported. It is recommended to use 'grid-wrap' "
 "instead."
)

 # cannot pass a func kwarg named "output" to map_overlap
 spline_filter1d_method = functools.partial(spline_filter1d_method,
 output=dtype)

 result = image.map_overlap(
 spline_filter1d_method,
 depth=tuple(depths),
 boundary="periodic" if mode == 'grid-wrap' else "none",
 dtype=dtype,
 meta=image._meta,
 # spline_filter1d kwargs
 order=order,
 axis=axis,
 mode=mode,
)

 return result

 Source code for dask_image.ndmeasure

-*- coding: utf-8 -*-

import collections
import functools
import operator
import warnings
from dask import compute, delayed

import dask.array as da
import dask.bag as db
import dask.dataframe as dd
import numpy as np

from . import _utils
from ._utils import _label
from ._utils._find_objects import _array_chunk_location, _find_bounding_boxes, _find_objects

__all__ = [
 "area",
 "center_of_mass",
 "extrema",
 "histogram",
 "label",
 "labeled_comprehension",
 "maximum",
 "maximum_position",
 "mean",
 "median",
 "minimum",
 "minimum_position",
 "standard_deviation",
 "sum",
 "sum_labels",
 "variance",
]

[docs]def area(image, label_image=None, index=None):
 """Find the area of specified subregions in an image.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers.
 If None (default), returns area of total image dimensions.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.
 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 area : ndarray
 Area of ``index`` selected regions from ``label_image``.

 Example

 >>> import dask.array as da
 >>> image = da.random.random((3, 3))
 >>> label_image = da.from_array(
 [[1, 1, 0],
 [1, 0, 3],
 [0, 7, 0]], chunks=(1, 3))

 >>> # No labels given, returns area of total image dimensions
 >>> area(image)
 9

 >>> # Combined area of all non-zero labels
 >>> area(image, label_image).compute()
 5

 >>> # Areas of selected labels selected with the ``index`` keyword argument
 >>> area(image, label_image, index=[0, 1, 2, 3]).compute()
 array([4, 3, 0, 1], dtype=int64)
 """

 if label_image is None:
 return da.prod(np.array([i for i in image.shape]))

 else:
 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 ones = da.ones(
 label_image.shape, dtype=bool, chunks=label_image.chunks
)

 area_lbl = labeled_comprehension(
 ones, label_image, index, len, int, int(0)
)

 return area_lbl

[docs]def center_of_mass(image, label_image=None, index=None):
 """
 Find the center of mass over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 center_of_mass : ndarray
 Coordinates of centers-of-mass of ``image`` over the ``index`` selected
 regions from ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 # SciPy transposes these for some reason.
 # So we do the same thing here.
 # This only matters if index is some array.
 index = index.T

 out_dtype = np.dtype([("com", float, (image.ndim,))])
 default_1d = np.full((1,), np.nan, dtype=out_dtype)

 func = functools.partial(
 _utils._center_of_mass, shape=image.shape, dtype=out_dtype
)
 com_lbl = labeled_comprehension(
 image, label_image, index,
 func, out_dtype, default_1d[0], pass_positions=True
)
 com_lbl = com_lbl["com"]

 return com_lbl

[docs]def extrema(image, label_image=None, index=None):
 """
 Find the min and max with positions over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 minimums, maximums, min_positions, max_positions : tuple of ndarrays
 Values and coordinates of minimums and maximums in each feature.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 out_dtype = np.dtype([
 ("min_val", image.dtype),
 ("max_val", image.dtype),
 ("min_pos", np.dtype(int), image.ndim),
 ("max_pos", np.dtype(int), image.ndim)
])
 default_1d = np.zeros((1,), dtype=out_dtype)

 func = functools.partial(
 _utils._extrema, shape=image.shape, dtype=out_dtype
)
 extrema_lbl = labeled_comprehension(
 image, label_image, index,
 func, out_dtype, default_1d[0], pass_positions=True
)
 extrema_lbl = collections.OrderedDict([
 (k, extrema_lbl[k])
 for k in ["min_val", "max_val", "min_pos", "max_pos"]
])

 for pos_key in ["min_pos", "max_pos"]:
 pos_nd = extrema_lbl[pos_key]

 if index.ndim == 0:
 pos_nd = da.squeeze(pos_nd)
 elif index.ndim > 1:
 pos_nd = pos_nd.reshape(
 (int(np.prod(pos_nd.shape[:-1])), pos_nd.shape[-1])
)

 extrema_lbl[pos_key] = pos_nd

 result = tuple(extrema_lbl.values())

 return result

def find_objects(label_image):
 """Return bounding box slices for each object labelled by integers.

 Parameters

 label_image : ndarray
 Image features noted by integers.

 Returns

 Dask dataframe
 Each row respresents an indivdual integrer label. Columns contain the
 slice information for the object boundaries in each dimension
 (dimensions are named: 0, 1, ..., nd).

 Notes

 You must have the optional dependency ``dask[dataframe]`` installed
 to use the ``find_objects`` function.
 """
 if label_image.dtype.char not in np.typecodes['AllInteger']:
 raise ValueError("find_objects only accepts integer dtype arrays")

 block_iter = zip(
 np.ndindex(*label_image.numblocks),
 map(functools.partial(operator.getitem, label_image),
 da.core.slices_from_chunks(label_image.chunks))
)

 arrays = []
 for block_id, block in block_iter:
 array_location = _array_chunk_location(block_id, label_image.chunks)
 arrays.append(delayed(_find_bounding_boxes)(block, array_location))

 bag = db.from_sequence(arrays)
 result = bag.fold(functools.partial(_find_objects, label_image.ndim), split_every=2).to_delayed()
 meta = dd.utils.make_meta([(i, object) for i in range(label_image.ndim)])
 result = delayed(compute)(result)[0] # avoid the user having to call compute twice on result
 result = dd.from_delayed(result, meta=meta, prefix="find-objects-", verify_meta=False)

 return result

[docs]def histogram(image,
 min,
 max,
 bins,
 label_image=None,
 index=None):
 """
 Find the histogram over an image at specified subregions.

 Histogram calculates the frequency of values in an array within bins
 determined by ``min``, ``max``, and ``bins``. The ``label_image`` and
 ``index`` keywords can limit the scope of the histogram to specified
 sub-regions within the array.

 Parameters

 image : ndarray
 N-D image data
 min : int
 Minimum value of range of histogram bins.
 max : int
 Maximum value of range of histogram bins.
 bins : int
 Number of bins.
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 histogram : ndarray
 Histogram of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)
 min = int(min)
 max = int(max)
 bins = int(bins)

 func = functools.partial(_utils._histogram, min=min, max=max, bins=bins)
 result = labeled_comprehension(
 image, label_image, index, func, object, None
)

 return result

[docs]def label(image, structure=None):
 """
 Label features in an array.

 Parameters

 image : ndarray
 An array-like object to be labeled. Any non-zero values in ``image``
 are counted as features and zero values are considered the background.
 structure : ndarray, optional
 A structuring element that defines feature connections.
 ``structure`` must be symmetric. If no structuring element is
 provided, one is automatically generated with a squared connectivity
 equal to one. That is, for a 2-D ``image`` array, the default
 structuring element is::

 [[0,1,0],
 [1,1,1],
 [0,1,0]]

 Returns

 label : ndarray or int
 An integer ndarray where each unique feature in ``image`` has a unique
 label in the returned array.
 num_features : int
 How many objects were found.
 """

 image = da.asarray(image)

 labeled_blocks = np.empty(image.numblocks, dtype=object)

 # First, label each block independently, incrementing the labels in that
 # block by the total number of labels from previous blocks. This way, each
 # block's labels are globally unique.
 block_iter = zip(
 np.ndindex(*image.numblocks),
 map(functools.partial(operator.getitem, image),
 da.core.slices_from_chunks(image.chunks))
)
 index, input_block = next(block_iter)
 labeled_blocks[index], total = _label.block_ndi_label_delayed(input_block,
 structure)
 for index, input_block in block_iter:
 labeled_block, n = _label.block_ndi_label_delayed(input_block,
 structure)
 block_label_offset = da.where(labeled_block > 0,
 total,
 _label.LABEL_DTYPE.type(0))
 labeled_block += block_label_offset
 labeled_blocks[index] = labeled_block
 total += n

 # Put all the blocks together
 block_labeled = da.block(labeled_blocks.tolist())

 # Now, build a label connectivity graph that groups labels across blocks.
 # We use this graph to find connected components and then relabel each
 # block according to those.
 label_groups = _label.label_adjacency_graph(block_labeled, structure,
 total)
 new_labeling = _label.connected_components_delayed(label_groups)
 relabeled = _label.relabel_blocks(block_labeled, new_labeling)
 n = da.max(relabeled)

 return (relabeled, n)

[docs]def labeled_comprehension(image,
 label_image,
 index,
 func,
 out_dtype,
 default,
 pass_positions=False):
 """
 Compute a function over an image at specified subregions.

 Roughly equivalent to [func(image[labels == i]) for i in index].

 Sequentially applies an arbitrary function (that works on array_like image)
 to subsets of an n-D image array specified by ``label_image`` and
 ``index``. The option exists to provide the function with positional
 parameters as the second argument.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 func : callable
 Python function to apply to ``label_image`` from ``image``.
 out_dtype : dtype
 Dtype to use for ``result``.
 default : int, float or None
 Default return value when a element of ``index`` does not exist
 in ``label_image``.
 pass_positions : bool, optional
 If True, pass linear indices to ``func`` as a second argument.
 Default is False.

 Returns

 result : ndarray
 Result of applying ``func`` on ``image`` over the ``index`` selected
 regions from ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 out_dtype = np.dtype(out_dtype)
 default_1d = np.full((1,), default, dtype=out_dtype)

 pass_positions = bool(pass_positions)

 args = (image,)
 if pass_positions:
 positions = _utils._ravel_shape_indices(
 image.shape, chunks=image.chunks
)
 args = (image, positions)

 result = np.empty(index.shape, dtype=object)
 for i in np.ndindex(index.shape):
 lbl_mtch_i = (label_image == index[i])
 args_lbl_mtch_i = tuple(e[lbl_mtch_i] for e in args)
 result[i] = _utils._labeled_comprehension_func(
 func, out_dtype, default_1d, *args_lbl_mtch_i
)

 for i in range(result.ndim - 1, -1, -1):
 result2 = result[..., 0]
 for j in np.ndindex(index.shape[:i]):
 result2[j] = da.stack(result[j].tolist(), axis=0)
 result = result2
 result = result[()][..., 0]

 return result

[docs]def maximum(image, label_image=None, index=None):
 """
 Find the maxima over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 maxima : ndarray
 Maxima of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 return labeled_comprehension(
 image, label_image, index, np.max, image.dtype, image.dtype.type(0)
)

[docs]def maximum_position(image, label_image=None, index=None):
 """
 Find the positions of maxima over an image at specified subregions.

 For each region specified by ``label_image``, the position of the maximum
 value of ``image`` within the region is returned.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 maxima_positions : ndarray
 Maxima positions of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 if index.shape:
 index = index.flatten()

 out_dtype = np.dtype([("pos", int, (image.ndim,))])
 default_1d = np.zeros((1,), dtype=out_dtype)

 func = functools.partial(
 _utils._argmax, shape=image.shape, dtype=out_dtype
)
 max_pos_lbl = labeled_comprehension(
 image, label_image, index,
 func, out_dtype, default_1d[0], pass_positions=True
)
 max_pos_lbl = max_pos_lbl["pos"]

 if index.shape == tuple():
 max_pos_lbl = da.squeeze(max_pos_lbl)

 return max_pos_lbl

[docs]def mean(image, label_image=None, index=None):
 """
 Find the mean over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 means : ndarray
 Mean of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 nan = np.float64(np.nan)

 mean_lbl = labeled_comprehension(
 image, label_image, index, np.mean, np.float64, nan
)

 return mean_lbl

[docs]def median(image, label_image=None, index=None):
 """
 Find the median over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 medians : ndarray
 Median of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 nan = np.float64(np.nan)

 return labeled_comprehension(
 image, label_image, index, np.median, np.float64, nan
)

[docs]def minimum(image, label_image=None, index=None):
 """
 Find the minima over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 minima : ndarray
 Minima of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 return labeled_comprehension(
 image, label_image, index, np.min, image.dtype, image.dtype.type(0)
)

[docs]def minimum_position(image, label_image=None, index=None):
 """
 Find the positions of minima over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 minima_positions : ndarray
 Maxima positions of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 if index.shape:
 index = index.flatten()

 out_dtype = np.dtype([("pos", int, (image.ndim,))])
 default_1d = np.zeros((1,), dtype=out_dtype)

 func = functools.partial(
 _utils._argmin, shape=image.shape, dtype=out_dtype
)
 min_pos_lbl = labeled_comprehension(
 image, label_image, index,
 func, out_dtype, default_1d[0], pass_positions=True
)
 min_pos_lbl = min_pos_lbl["pos"]

 if index.shape == tuple():
 min_pos_lbl = da.squeeze(min_pos_lbl)

 return min_pos_lbl

[docs]def standard_deviation(image, label_image=None, index=None):
 """
 Find the standard deviation over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 standard_deviation : ndarray
 Standard deviation of ``image`` over the ``index`` selected regions
 from ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 nan = np.float64(np.nan)

 std_lbl = labeled_comprehension(
 image, label_image, index, np.std, np.float64, nan
)

 return std_lbl

[docs]def sum_labels(image, label_image=None, index=None):
 """
 Find the sum of all pixels over specified subregions of an image.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 sum_lbl : ndarray
 Sum of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 sum_lbl = labeled_comprehension(
 image, label_image, index, np.sum, np.float64, np.float64(0)
)

 return sum_lbl

[docs]def sum(image, label_image=None, index=None):
 """DEPRECATED FUNCTION. Use `sum_labels` instead."""
 warnings.warn("DEPRECATED FUNCTION. Use `sum_labels` instead.",
 DeprecationWarning)
 return sum_labels(image, label_image=label_image, index=index)

[docs]def variance(image, label_image=None, index=None):
 """
 Find the variance over an image at specified subregions.

 Parameters

 image : ndarray
 N-D image data
 label_image : ndarray, optional
 Image features noted by integers. If None (default), all values.
 index : int or sequence of ints, optional
 Labels to include in output. If None (default), all values where
 non-zero ``label_image`` are used.

 The ``index`` argument only works when ``label_image`` is specified.

 Returns

 variance : ndarray
 Variance of ``image`` over the ``index`` selected regions from
 ``label_image``.
 """

 image, label_image, index = _utils._norm_input_labels_index(
 image, label_image, index
)

 nan = np.float64(np.nan)

 var_lbl = labeled_comprehension(
 image, label_image, index, np.var, np.float64, nan
)

 return var_lbl

 Source code for dask_image.ndmorph

-*- coding: utf-8 -*-
import scipy.ndimage

from ..dispatch._dispatch_ndmorph import (dispatch_binary_dilation,
 dispatch_binary_erosion)
from . import _ops, _utils

__all__ = [
 "binary_closing",
 "binary_dilation",
 "binary_erosion",
 "binary_opening",
]

[docs]@_utils._update_wrapper(scipy.ndimage.binary_closing)
def binary_closing(image,
 structure=None,
 iterations=1,
 origin=0,
 mask=None,
 border_value=0,
 brute_force=False):
 image = (image != 0)

 structure = _utils._get_structure(image, structure)
 iterations = _utils._get_iterations(iterations)
 origin = _utils._get_origin(structure.shape, origin)

 kwargs = dict(
 structure=structure,
 iterations=iterations,
 origin=origin,
 mask=mask,
 border_value=border_value,
 brute_force=brute_force
)

 result = image
 result = binary_dilation(result, **kwargs)
 result = binary_erosion(result, **kwargs)

 return result

[docs]@_utils._update_wrapper(scipy.ndimage.binary_dilation)
def binary_dilation(image,
 structure=None,
 iterations=1,
 mask=None,
 border_value=0,
 origin=0,
 brute_force=False):
 border_value = _utils._get_border_value(border_value)

 result = _ops._binary_op(
 dispatch_binary_dilation(image),
 image,
 structure=structure,
 iterations=iterations,
 mask=mask,
 origin=origin,
 brute_force=brute_force,
 border_value=border_value
)

 return result

[docs]@_utils._update_wrapper(scipy.ndimage.binary_erosion)
def binary_erosion(image,
 structure=None,
 iterations=1,
 mask=None,
 border_value=0,
 origin=0,
 brute_force=False):
 border_value = _utils._get_border_value(border_value)

 result = _ops._binary_op(
 dispatch_binary_erosion(image),
 image,
 structure=structure,
 iterations=iterations,
 mask=mask,
 origin=origin,
 brute_force=brute_force,
 border_value=border_value
)

 return result

[docs]@_utils._update_wrapper(scipy.ndimage.binary_opening)
def binary_opening(image,
 structure=None,
 iterations=1,
 origin=0,
 mask=None,
 border_value=0,
 brute_force=False):
 image = (image != 0)

 structure = _utils._get_structure(image, structure)
 iterations = _utils._get_iterations(iterations)
 origin = _utils._get_origin(structure.shape, origin)

 kwargs = dict(
 structure=structure,
 iterations=iterations,
 origin=origin,
 mask=mask,
 border_value=border_value,
 brute_force=brute_force
)

 result = image
 result = binary_erosion(result, **kwargs)
 result = binary_dilation(result, **kwargs)

 return result

Release Guide

This guide documents the dask-image release process.
It is based on the napari release guide created by Kira Evans.

This guide is primarily intended for core developers of dask-image.
They will need to have a PyPI [https://pypi.org] account
with upload permissions to the dask-image package.
They will also need permissions to merge pull requests
in the dask-image conda-forge feedstock repository:
https://github.com/conda-forge/dask-image-feedstock.

You will also need these additional release dependencies
to complete the release process:

pip install PyGithub>=1.44.1 twine>=3.1.1 tqdm

Set PyPI password as GitHub secret

The dask/dask-image repository must have a PyPI API token as a GitHub secret.

This likely has been done already, but if it has not, follow
this guide [https://pypi.org/help/#apitoken] to gain a token and
this other guide [https://help.github.com/en/actions/automating-your-workflow-with-github-actions/creating-and-using-encrypted-secrets]
to add it as a secret.

Determining the new version number

We use calendar versioning (CalVer) [https://calver.org/]
for dask-image. This means version numbers have the format
YYYY.MM.DD.

Versioneer [https://github.com/warner/python-versioneer]
then determines the exact version from the latest
git tag [https://git-scm.com/book/en/v2/Git-Basics-Tagging]
beginning with v. So our git tags will have the format vYYYY.MM.DD.

Generate the release notes

The release notes contain a list of merges, contributors, and reviewers.

	Crate a GH_TOKEN environment variable on your computer.

On Linux/Mac:

export GH_TOKEN=<your-gh-api-token>

On Windows:

set GH_TOKEN <your-gh-api-token>

If you don’t already have a
personal GitHub API token [https://github.blog/2013-05-16-personal-api-tokens/],
you can create one from the developer settings of your GitHub account:
https://github.com/settings/tokens

2. Run the python script to generate the release notes,
including all changes since the last tagged release.

Note: The PyGithub package must be installed to run this script (https://github.com/PyGithub/PyGithub)

Call the script like this:

python docs/release/generate_release_notes.py <last-version-tag> main --version <new-version-number>

An example:

python docs/release/generate_release_notes.py v2021.05.24 main --version 2021.06.03

See help for this script with:

python docs/release/generate_release_notes.py -h

	Scan the PR titles for highlights, deprecations, API changes,
and bugfixes, and mention these in the relevant sections of the notes.
Try to present the information in an expressive way by mentioning
the affected functions, elaborating on the changes and their
consequences. If possible, organize semantically close PRs in groups.

	Copy your edited release notes into the file HISTORY.rst.

	Make and merge a PR with the release notes before moving onto the next steps.

Create the release candidate

Go to the dask-image releases page: https://github.com/dask/dask-image/releases

Click the “Draft Release” button to create a new release candidate.

	Both the tag version and release title should have the format vYYYY.MM.DDrc1.

	Copy-paste the release notes from HISTORY.rst for this release into the
description text box.

Note here how we are using rc for release candidate to create a version
of our release we can test before making the real release.

Creating the release will trigger a GitHub actions script,
which automatically uploads the release to PyPI.

Testing the release candidate

The release candidate can then be tested with

pip install --pre dask-image

It is recommended that the release candidate is tested in a virtual environment
in order to isolate dependencies.

If the release candidate is not what you want, make your changes and
repeat the process from the beginning but
incrementing the number after rc (e.g. vYYYY.MM.DDrc1).

Once you are satisfied with the release candidate it is time to generate
the actual release.

Generating the actual release

To generate the actual release you will now repeat the processes above
but now dropping the rc suffix from the version number.

This will automatically upload the release to PyPI, and will also
automatically begin the process to release the new version on conda-forge.

Releasing on conda-forge

It usually takes about an hour or so for the conda-forge bot
regro-cf-autotick-bot to see that there is a new release
available on PyPI, and open a pull request in the dask-image
conda-forge feedstock here: https://github.com/conda-forge/dask-image-feedstock

Note: the conda-forge bot will not open a PR for any of the release candidates,
only for the final release. Only one PR is opened for

Before merging the pull request, first you should check:

	That all the tests have passed on CI for this pull request

	If any dependencies were changed, and should be updated in the pull request

Once that all looks good you can merge the pull request,
and the newest version of dask-image will automatically be made
available on conda-forge. We’re finished!

 nav.xhtml

 Table of Contents

 		
 Image processing with Dask Arrays

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Quickstart

 		
 Importing dask-image

 		
 Dask Examples

 		
 An Even Quicker Start

 		
 Further Reading

 		
 Talks and Slides

 		
 Function Coverage

 		
 Coverage of dask-image vs scipy ndimage functions

 		
 API

 		
 dask_image package

 		
 Subpackages

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Running tests locally

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 2021.12.0

 		
 0.6.0 (2021-05-06)

 		
 0.5.0 (2021-02-01)

 		
 0.4.0 (2020-09-02)

 		
 0.3.0 (2020-06-06)

 		
 0.2.0 (2018-10-10)

 		
 0.1.2 (2018-09-17)

 		
 0.1.1 (2018-08-31)

 		
 0.1.0 (2018-08-31)

_static/file.png

_static/minus.png

_static/plus.png

