

Image processing with Dask Arrays

Features

	Support focuses on Dask Arrays.

	Provides support for loading image files.

	Implements commonly used N-D filters.

	Includes a few N-D Fourier filters.

	Provides some functions for working with N-D label images.

	Supports a few N-D morphological operators.

Contents

	Installation

	API

	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install dask-image, run this command in your terminal:

$ pip install dask-image

This is the preferred method to install dask-image, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for dask-image can be downloaded from the Github repo [https://github.com/dask/dask-image].

You can either clone the public repository:

$ git clone git://github.com/dask/dask-image

Or download the tarball [https://github.com/dask/dask-image/tarball/master]:

$ curl -OL https://github.com/dask/dask-image/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

API

	dask_image package
	Subpackages
	dask_image.imread package

	dask_image.ndfilters package

	dask_image.ndfourier package

	dask_image.ndmeasure package

	dask_image.ndmorph package

dask_image package

Subpackages

	dask_image.imread package

	dask_image.ndfilters package

	dask_image.ndfourier package

	dask_image.ndmeasure package

	dask_image.ndmorph package

dask_image.imread package

	
dask_image.imread.imread(fname, nframes=1)

	Read image data into a Dask Array.

Provides a simple, fast mechanism to ingest image data into a
Dask Array.

	Parameters

	
	fname (str) – A glob like string that may match one or multiple filenames.

	nframes (int, optional) – Number of the frames to include in each chunk (default: 1).

	Returns

	array – A Dask Array representing the contents of all image files.

	Return type

	dask.array.Array

dask_image.ndfilters package

	
dask_image.ndfilters.convolve(input, weights, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.convolve”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional convolution.

The array is convolved with the given kernel.

	Parameters

	
	input (array_like) – The input array.

	weights (array_like) – Array of weights, same number of dimensions as input

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	result – The result of convolution of input with weights.

	Return type

	ndarray

See also

	correlate()

	Correlate an image with a kernel.

Notes

Each value in result is \(C_i = \sum_j{I_{i+k-j} W_j}\), where
W is the weights kernel,
j is the n-D spatial index over \(W\),
I is the input and k is the coordinate of the center of
W, specified by origin in the input parameters.

Examples

Perhaps the simplest case to understand is mode='constant', cval=0.0,
because in this case borders (i.e. where the weights kernel, centered
on any one value, extends beyond an edge of input.

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],
 [10, 3, 11, 11],
 [15, 12, 14, 7],
 [12, 3, 7, 0]])

Setting cval=1.0 is equivalent to padding the outer edge of input
with 1.0’s (and then extracting only the original region of the result).

>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],
 [11, 3, 11, 14],
 [16, 12, 14, 10],
 [15, 6, 10, 5]])

With mode='reflect' (the default), outer values are reflected at the
edge of input to fill in missing values.

>>> b = np.array([[2, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> k = np.array([[0,1,0], [0,1,0], [0,1,0]])
>>> ndimage.convolve(b, k, mode='reflect')
array([[5, 0, 0],
 [3, 0, 0],
 [1, 0, 0]])

This includes diagonally at the corners.

>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],
 [3, 2, 0],
 [1, 1, 0]])

With mode='nearest', the single nearest value in to an edge in
input is repeated as many times as needed to match the overlapping
weights.

>>> c = np.array([[2, 0, 1],
... [1, 0, 0],
... [0, 0, 0]])
>>> k = np.array([[0, 1, 0],
... [0, 1, 0],
... [0, 1, 0],
... [0, 1, 0],
... [0, 1, 0]])
>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],
 [5, 0, 2],
 [3, 0, 1]])

	
dask_image.ndfilters.correlate(input, weights, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.correlate”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional correlation.

The array is correlated with the given kernel.

	Parameters

	
	input (array_like) – The input array.

	weights (ndarray) – array of weights, same number of dimensions as input

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

See also

	convolve()

	Convolve an image with a kernel.

	
dask_image.ndfilters.gaussian_filter(input, sigma, order=0, mode='reflect', cval=0.0, truncate=4.0)

	Wrapped copy of “scipy.ndimage.filters.gaussian_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Gaussian filter.

	Parameters

	
	input (array_like) – The input array.

	sigma (scalar or sequence of scalars) – Standard deviation for Gaussian kernel. The standard
deviations of the Gaussian filter are given for each axis as a
sequence, or as a single number, in which case it is equal for
all axes.

	order (int or sequence of ints, optional) – The order of the filter along each axis is given as a sequence
of integers, or as a single number. An order of 0 corresponds
to convolution with a Gaussian kernel. A positive order
corresponds to convolution with that derivative of a Gaussian.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	truncate (float) – Truncate the filter at this many standard deviations.
Default is 4.0.

	Returns

	gaussian_filter – Returned array of same shape as input.

	Return type

	ndarray

Notes

The multidimensional filter is implemented as a sequence of
one-dimensional convolution filters. The intermediate arrays are
stored in the same data type as the output. Therefore, for output
types with a limited precision, the results may be imprecise
because intermediate results may be stored with insufficient
precision.

Examples

>>> from scipy.ndimage import gaussian_filter
>>> a = np.arange(50, step=2).reshape((5,5))
>>> a
array([[0, 2, 4, 6, 8],
 [10, 12, 14, 16, 18],
 [20, 22, 24, 26, 28],
 [30, 32, 34, 36, 38],
 [40, 42, 44, 46, 48]])
>>> gaussian_filter(a, sigma=1)
array([[4, 6, 8, 9, 11],
 [10, 12, 14, 15, 17],
 [20, 22, 24, 25, 27],
 [29, 31, 33, 34, 36],
 [35, 37, 39, 40, 42]])

>>> from scipy import misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = gaussian_filter(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.gaussian_gradient_magnitude(input, sigma, mode='reflect', cval=0.0, truncate=4.0, **kwargs)

	Wrapped copy of “scipy.ndimage.filters.gaussian_gradient_magnitude”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional gradient magnitude using Gaussian derivatives.

	Parameters

	
	input (array_like) – The input array.

	sigma (scalar or sequence of scalars) – The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case
it is equal for all axes..

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	keyword arguments will be passed to gaussian_filter() (Extra) –

	Returns

	gaussian_gradient_magnitude – Filtered array. Has the same shape as input.

	Return type

	ndarray

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.gaussian_laplace(input, sigma, mode='reflect', cval=0.0, truncate=4.0, **kwargs)

	Wrapped copy of “scipy.ndimage.filters.gaussian_laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Laplace filter using gaussian second derivatives.

	Parameters

	
	input (array_like) – The input array.

	sigma (scalar or sequence of scalars) – The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case
it is equal for all axes.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	keyword arguments will be passed to gaussian_filter() (Extra) –

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()

>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side

>>> result = ndimage.gaussian_laplace(ascent, sigma=1)
>>> ax1.imshow(result)

>>> result = ndimage.gaussian_laplace(ascent, sigma=3)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.generic_filter(input, function, size=None, footprint=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords={})

	Wrapped copy of “scipy.ndimage.filters.generic_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multi-dimensional filter using the given function.

At each element the provided function is called. The input values
within the filter footprint at that element are passed to the function
as a 1D array of double values.

	Parameters

	
	input (array_like) – The input array.

	function ({callable, scipy.LowLevelCallable}) – Function to apply at each element.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	extra_arguments (sequence, optional) – Sequence of extra positional arguments to pass to passed function.

	extra_keywords (dict, optional) – dict of extra keyword arguments to pass to passed function.

Notes

This function also accepts low-level callback functions with one of
the following signatures and wrapped in scipy.LowLevelCallable:

int callback(double *buffer, npy_intp filter_size,
 double *return_value, void *user_data)
int callback(double *buffer, intptr_t filter_size,
 double *return_value, void *user_data)

The calling function iterates over the elements of the input and
output arrays, calling the callback function at each element. The
elements within the footprint of the filter at the current element are
passed through the buffer parameter, and the number of elements
within the footprint through filter_size. The calculated value is
returned in return_value. user_data is the data pointer provided
to scipy.LowLevelCallable as-is.

The callback function must return an integer error status that is zero
if something went wrong and one otherwise. If an error occurs, you should
normally set the python error status with an informative message
before returning, otherwise a default error message is set by the
calling function.

In addition, some other low-level function pointer specifications
are accepted, but these are for backward compatibility only and should
not be used in new code.

	
dask_image.ndfilters.laplace(input, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

N-dimensional Laplace filter based on approximate second derivatives.

	Parameters

	
	input (array_like) – The input array.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.laplace(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.maximum_filter(input, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.maximum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multi-dimensional maximum filter.

	Parameters

	
	input (array_like) – The input array.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	maximum_filter – Filtered array. Has the same shape as input.

	Return type

	ndarray

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.maximum_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.median_filter(input, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.median_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multidimensional median filter.

	Parameters

	
	input (array_like) – The input array.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	median_filter – Filtered array. Has the same shape as input.

	Return type

	ndarray

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.median_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.minimum_filter(input, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.minimum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multi-dimensional minimum filter.

	Parameters

	
	input (array_like) – The input array.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	minimum_filter – Filtered array. Has the same shape as input.

	Return type

	ndarray

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.minimum_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.percentile_filter(input, percentile, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.percentile_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multi-dimensional percentile filter.

	Parameters

	
	input (array_like) – The input array.

	percentile (scalar) – The percentile parameter may be less then zero, i.e.,
percentile = -20 equals percentile = 80

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	percentile_filter – Filtered array. Has the same shape as input.

	Return type

	ndarray

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.percentile_filter(ascent, percentile=20, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.prewitt(input, axis=-1, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.prewitt”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Prewitt filter.

	Parameters

	
	input (array_like) – The input array.

	axis (int, optional) – The axis of input along which to calculate. Default is -1.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.prewitt(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.rank_filter(input, rank, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.rank_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a multi-dimensional rank filter.

	Parameters

	
	input (array_like) – The input array.

	rank (int) – The rank parameter may be less then zero, i.e., rank = -1
indicates the largest element.

	size (scalar or tuple, optional) – See footprint, below. Ignored if footprint is given.

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2). When footprint is given, size is ignored.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	rank_filter – Filtered array. Has the same shape as input.

	Return type

	ndarray

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.rank_filter(ascent, rank=42, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.sobel(input, axis=-1, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.sobel”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Sobel filter.

	Parameters

	
	input (array_like) – The input array.

	axis (int, optional) – The axis of input along which to calculate. Default is -1.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.sobel(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_image.ndfilters.uniform_filter(input, size=3, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.uniform_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional uniform filter.

	Parameters

	
	input (array_like) – The input array.

	size (int or sequence of ints, optional) – The sizes of the uniform filter are given for each axis as a
sequence, or as a single number, in which case the size is
equal for all axes.

	mode (str or sequence, optional) – The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes
with length equal to the number of dimensions of the input array,
different modes can be specified along each axis. Default value is
‘reflect’. The valid values and their behavior is as follows:

	’reflect’ (d c b a | a b c d | d c b a)

	The input is extended by reflecting about the edge of the last
pixel.

	’constant’ (k k k k | a b c d | k k k k)

	The input is extended by filling all values beyond the edge with
the same constant value, defined by the cval parameter.

	’nearest’ (a a a a | a b c d | d d d d)

	The input is extended by replicating the last pixel.

	’mirror’ (d c b | a b c d | c b a)

	The input is extended by reflecting about the center of the last
pixel.

	’wrap’ (a b c d | a b c d | a b c d)

	The input is extended by wrapping around to the opposite edge.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0.

	origin (int or sequence, optional) – Controls the placement of the filter on the input array’s pixels.
A value of 0 (the default) centers the filter over the pixel, with
positive values shifting the filter to the left, and negative ones
to the right. By passing a sequence of origins with length equal to
the number of dimensions of the input array, different shifts can
be specified along each axis.

	Returns

	uniform_filter – Filtered array. Has the same shape as input.

	Return type

	ndarray

Notes

The multi-dimensional filter is implemented as a sequence of
one-dimensional uniform filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.uniform_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

dask_image.ndfourier package

	
dask_image.ndfourier.fourier_gaussian(input, sigma, n=-1, axis=-1)

	Multi-dimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian
kernel.

	Parameters

	
	input (array_like) – The input array.

	sigma (float or sequence) – The sigma of the Gaussian kernel. If a float, sigma is the same for
all axes. If a sequence, sigma has to contain one value for each
axis.

	n (int, optional) – If n is negative (default), then the input is assumed to be the
result of a complex fft.
If n is larger than or equal to zero, the input is assumed to be the
result of a real fft, and n gives the length of the array before
transformation along the real transform direction.

	axis (int, optional) – The axis of the real transform.

	Returns

	fourier_gaussian

	Return type

	Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_gaussian(input_, sigma=4)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)

	
dask_image.ndfourier.fourier_shift(input, shift, n=-1, axis=-1)

	Multi-dimensional fourier shift filter.

The array is multiplied with the fourier transform of a shift operation.

	Parameters

	
	input (array_like) – The input array.

	shift (float or sequence) – The size of the box used for filtering.
If a float, shift is the same for all axes. If a sequence, shift
has to contain one value for each axis.

	n (int, optional) – If n is negative (default), then the input is assumed to be the
result of a complex fft.
If n is larger than or equal to zero, the input is assumed to be the
result of a real fft, and n gives the length of the array before
transformation along the real transform direction.

	axis (int, optional) – The axis of the real transform.

	Returns

	fourier_shift

	Return type

	Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> import numpy.fft
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_shift(input_, shift=200)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()

	
dask_image.ndfourier.fourier_uniform(input, size, n=-1, axis=-1)

	Multi-dimensional uniform fourier filter.

The array is multiplied with the fourier transform of a box of given
size.

	Parameters

	
	input (array_like) – The input array.

	size (float or sequence) – The size of the box used for filtering.
If a float, size is the same for all axes. If a sequence, size has
to contain one value for each axis.

	n (int, optional) – If n is negative (default), then the input is assumed to be the
result of a complex fft.
If n is larger than or equal to zero, the input is assumed to be the
result of a real fft, and n gives the length of the array before
transformation along the real transform direction.

	axis (int, optional) – The axis of the real transform.

	Returns

	fourier_uniform – The filtered input. If output is given as a parameter, None is
returned.

	Return type

	Dask Array

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_uniform(input_, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()

dask_image.ndmeasure package

	
dask_image.ndmeasure.center_of_mass(input, labels=None, index=None)

	Find the center of mass over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	center_of_mass – Coordinates of centers-of-mass of input over the index selected
regions from labels.

	Return type

	ndarray

	
dask_image.ndmeasure.extrema(input, labels=None, index=None)

	Find the min and max with positions over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	minimums, maximums, min_positions, max_positions – Values and coordinates of minimums and maximums in each feature.

	Return type

	tuple of ndarrays

	
dask_image.ndmeasure.histogram(input, min, max, bins, labels=None, index=None)

	Find the histogram over an image at specified subregions.

Histogram calculates the frequency of values in an array within bins
determined by min, max, and bins. The labels and index
keywords can limit the scope of the histogram to specified sub-regions
within the array.

	Parameters

	
	input (ndarray) – N-D image data

	min (int) – Minimum value of range of histogram bins.

	max (int) – Maximum value of range of histogram bins.

	bins (int) – Number of bins.

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	histogram – Histogram of input over the index selected regions from
labels.

	Return type

	ndarray

	
dask_image.ndmeasure.label(input, structure=None)

	Label features in an array.

	Parameters

	
	input (ndarray) – An array-like object to be labeled. Any non-zero values in input
are counted as features and zero values are considered the background.

	structure (ndarray, optional) – A structuring element that defines feature connections.
structure must be symmetric. If no structuring element is
provided, one is automatically generated with a squared connectivity
equal to one. That is, for a 2-D input array, the default
structuring element is:

[[0,1,0],
 [1,1,1],
 [0,1,0]]

	Returns

	
	label (ndarray or int) – An integer ndarray where each unique feature in input has a unique
label in the returned array.

	num_features (int) – How many objects were found.

	
dask_image.ndmeasure.labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False)

	Compute a function over an image at specified subregions.

Roughly equivalent to [func(input[labels == i]) for i in index].

Sequentially applies an arbitrary function (that works on array_like input)
to subsets of an n-D image array specified by labels and index.
The option exists to provide the function with positional parameters as the
second argument.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	func (callable) – Python function to apply to labels from input.

	out_dtype (dtype) – Dtype to use for result.

	default (int, float or None) – Default return value when a element of index does not exist
in labels.

	pass_positions (bool, optional) – If True, pass linear indices to func as a second argument.
Default is False.

	Returns

	result – Result of applying func on input over the index selected
regions from labels.

	Return type

	ndarray

	
dask_image.ndmeasure.maximum(input, labels=None, index=None)

	Find the maxima over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	maxima – Maxima of input over the index selected regions from
labels.

	Return type

	ndarray

	
dask_image.ndmeasure.maximum_position(input, labels=None, index=None)

	Find the positions of maxima over an image at specified subregions.

For each region specified by labels, the position of the maximum
value of input within the region is returned.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	maxima_positions – Maxima positions of input over the index selected regions from
labels.

	Return type

	ndarray

	
dask_image.ndmeasure.mean(input, labels=None, index=None)

	Find the mean over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	means – Mean of input over the index selected regions from labels.

	Return type

	ndarray

	
dask_image.ndmeasure.median(input, labels=None, index=None)

	Find the median over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	medians – Median of input over the index selected regions from
labels.

	Return type

	ndarray

	
dask_image.ndmeasure.minimum(input, labels=None, index=None)

	Find the minima over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	minima – Minima of input over the index selected regions from
labels.

	Return type

	ndarray

	
dask_image.ndmeasure.minimum_position(input, labels=None, index=None)

	Find the positions of minima over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	minima_positions – Maxima positions of input over the index selected regions from
labels.

	Return type

	ndarray

	
dask_image.ndmeasure.standard_deviation(input, labels=None, index=None)

	Find the standard deviation over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	standard_deviation – Standard deviation of input over the index selected regions
from labels.

	Return type

	ndarray

	
dask_image.ndmeasure.sum(input, labels=None, index=None)

	Find the sum over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	sum – Sum of input over the index selected regions from labels.

	Return type

	ndarray

	
dask_image.ndmeasure.variance(input, labels=None, index=None)

	Find the variance over an image at specified subregions.

	Parameters

	
	input (ndarray) – N-D image data

	labels (ndarray, optional) – Image features noted by integers. If None (default), all values.

	index (int or sequence of ints, optional) – Labels to include in output. If None (default), all values where
non-zero labels are used.

The index argument only works when labels is specified.

	Returns

	variance – Variance of input over the index selected regions from
labels.

	Return type

	ndarray

dask_image.ndmorph package

	
dask_image.ndmorph.binary_closing(input, structure=None, iterations=1, origin=0)

	Wrapped copy of “scipy.ndimage.morphology.binary_closing”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary closing with the given structuring element.

The closing of an input image by a structuring element is the
erosion of the dilation of the image by the structuring element.

	Parameters

	
	input (array_like) – Binary array_like to be closed. Non-zero (True) elements form
the subset to be closed.

	structure (array_like, optional) – Structuring element used for the closing. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).

	iterations ({int, float}, optional) – The dilation step of the closing, then the erosion step are each
repeated iterations times (one, by default). If iterations is
less than 1, each operations is repeated until the result does
not change anymore.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

New in version 1.1.0.

	border_value (int (cast to 0 or 1), optional) – Value at the border in the output array.

New in version 1.1.0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the
current iteration; if true al pixels are considered as candidates for
update, regardless of what happened in the previous iteration.
False by default.

New in version 1.1.0.

	Returns

	binary_closing – Closing of the input by the structuring element.

	Return type

	ndarray of bools

See also

grey_closing(), binary_opening(), binary_dilation(), binary_erosion(), generate_binary_structure()

Notes

Closing [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of a dilation and an erosion of the
input with the same structuring element. Closing therefore fills
holes smaller than the structuring element.

Together with opening (binary_opening), closing can be used for
noise removal.

References

	1

	http://en.wikipedia.org/wiki/Closing_%28morphology%29

	2

	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(int)
array([[0, 1, 1, 1, 0],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [0, 1, 1, 1, 0]])
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])

>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])

	
dask_image.ndmorph.binary_dilation(input, structure=None, iterations=1, mask=None, border_value=0, origin=0, brute_force=False)

	Wrapped copy of “scipy.ndimage.morphology.binary_dilation”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary dilation with the given structuring element.

	Parameters

	
	input (array_like) – Binary array_like to be dilated. Non-zero (True) elements form
the subset to be dilated.

	structure (array_like, optional) – Structuring element used for the dilation. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one.

	iterations ({int, float}, optional) – The dilation is repeated iterations times (one, by default).
If iterations is less than 1, the dilation is repeated until the
result does not change anymore.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (dilated)
in the current iteration; if True all pixels are considered as
candidates for dilation, regardless of what happened in the previous
iteration. False by default.

	Returns

	binary_dilation – Dilation of the input by the structuring element.

	Return type

	ndarray of bools

See also

grey_dilation(), binary_erosion(), binary_closing(), binary_opening(), generate_binary_structure()

Notes

Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for expanding the shapes in an image. The binary
dilation of an image by a structuring element is the locus of the points
covered by the structuring element, when its center lies within the
non-zero points of the image.

References

	1

	http://en.wikipedia.org/wiki/Dilation_%28morphology%29

	2

	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],
 [False, False, True, False, False],
 [False, True, True, True, False],
 [False, False, True, False, False],
 [False, False, False, False, False]], dtype=bool)
>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 1., 1., 1., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct1,\
... iterations=2).astype(a.dtype)
array([[0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [1., 1., 1., 1., 1.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.]])

	
dask_image.ndmorph.binary_erosion(input, structure=None, iterations=1, mask=None, border_value=0, origin=0, brute_force=False)

	Wrapped copy of “scipy.ndimage.morphology.binary_erosion”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image
processing.

	Parameters

	
	input (array_like) – Binary image to be eroded. Non-zero (True) elements form
the subset to be eroded.

	structure (array_like, optional) – Structuring element used for the erosion. Non-zero elements are
considered True. If no structuring element is provided, an element
is generated with a square connectivity equal to one.

	iterations ({int, float}, optional) – The erosion is repeated iterations times (one, by default).
If iterations is less than 1, the erosion is repeated until the
result does not change anymore.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (eroded) in
the current iteration; if True all pixels are considered as candidates
for erosion, regardless of what happened in the previous iteration.
False by default.

	Returns

	binary_erosion – Erosion of the input by the structuring element.

	Return type

	ndarray of bools

See also

grey_erosion(), binary_dilation(), binary_closing(), binary_opening(), generate_binary_structure()

Notes

Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for shrinking the shapes in an image. The binary
erosion of an image by a structuring element is the locus of the points
where a superimposition of the structuring element centered on the point
is entirely contained in the set of non-zero elements of the image.

References

	1

	http://en.wikipedia.org/wiki/Erosion_%28morphology%29

	2

	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])

	
dask_image.ndmorph.binary_opening(input, structure=None, iterations=1, origin=0)

	Wrapped copy of “scipy.ndimage.morphology.binary_opening”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary opening with the given structuring element.

The opening of an input image by a structuring element is the
dilation of the erosion of the image by the structuring element.

	Parameters

	
	input (array_like) – Binary array_like to be opened. Non-zero (True) elements form
the subset to be opened.

	structure (array_like, optional) – Structuring element used for the opening. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).

	iterations ({int, float}, optional) – The erosion step of the opening, then the dilation step are each
repeated iterations times (one, by default). If iterations is
less than 1, each operation is repeated until the result does
not change anymore.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

New in version 1.1.0.

	border_value (int (cast to 0 or 1), optional) – Value at the border in the output array.

New in version 1.1.0.

	brute_force (boolean, optional) – Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the
current iteration; if true all pixels are considered as candidates for
update, regardless of what happened in the previous iteration.
False by default.

New in version 1.1.0.

	Returns

	binary_opening – Opening of the input by the structuring element.

	Return type

	ndarray of bools

See also

grey_opening(), binary_closing(), binary_erosion(), binary_dilation(), generate_binary_structure()

Notes

Opening [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of an erosion and a dilation of the
input with the same structuring element. Opening therefore removes
objects smaller than the structuring element.

Together with closing (binary_closing), opening can be used for
noise removal.

References

	1

	http://en.wikipedia.org/wiki/Opening_%28morphology%29

	2

	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 1]])
>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0]])
>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]])
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0]])

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dask/dask-image/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

dask-image could always use more documentation, whether as part of the
official dask-image docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dask/dask-image/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dask-image for local development.

	Fork the dask-image repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dask-image.git

	Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork for local development (on Windows drop source). Replace “<some version>” with the Python version used for testing.:

$ conda create -n dask-image-env python="<some version>"
$ source activate dask-image-env
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions:

$ flake8 dask_image tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for all supported Python versions. Check CIs
and make sure that the tests pass for all supported Python versions
and platforms.

Tips

To run a subset of tests:

$ py.test tests/test_dask_image.py

Credits

Development Lead

	John Kirkham <kirkhamj@janelia.hhmi.org>

Contributors

None yet. Why not be the first?

History

0.1.1 (2018-08-31)

	Fix a bug in an ndmeasure test of an internal function.

0.1.0 (2018-08-31)

	First release on PyPI.

	Pulls in content from dask-image org.

	Supports reading of image files into Dask.

	Provides basic N-D filters with options to extend.

	Provides a few N-D Fourier filters.

	Provides a few N-D morphological filters.

	Provides a few N-D measurement functions for label images.

	Has 100% line coverage in test suite.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dask_image	

 	
 	
 dask_image.imread	

 	
 	
 dask_image.ndfilters	

 	
 	
 dask_image.ndfourier	

 	
 	
 dask_image.ndmeasure	

 	
 	
 dask_image.ndmorph	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | U
 | V

B

 	
 	binary_closing() (in module dask_image.ndmorph)

 	binary_dilation() (in module dask_image.ndmorph)

 	
 	binary_erosion() (in module dask_image.ndmorph)

 	binary_opening() (in module dask_image.ndmorph)

C

 	
 	center_of_mass() (in module dask_image.ndmeasure)

 	
 	convolve() (in module dask_image.ndfilters)

 	correlate() (in module dask_image.ndfilters)

D

 	
 	dask_image (module)

 	dask_image.imread (module)

 	dask_image.ndfilters (module)

 	
 	dask_image.ndfourier (module)

 	dask_image.ndmeasure (module)

 	dask_image.ndmorph (module)

E

 	
 	extrema() (in module dask_image.ndmeasure)

F

 	
 	fourier_gaussian() (in module dask_image.ndfourier)

 	
 	fourier_shift() (in module dask_image.ndfourier)

 	fourier_uniform() (in module dask_image.ndfourier)

G

 	
 	gaussian_filter() (in module dask_image.ndfilters)

 	gaussian_gradient_magnitude() (in module dask_image.ndfilters)

 	
 	gaussian_laplace() (in module dask_image.ndfilters)

 	generic_filter() (in module dask_image.ndfilters)

H

 	
 	histogram() (in module dask_image.ndmeasure)

I

 	
 	imread() (in module dask_image.imread)

L

 	
 	label() (in module dask_image.ndmeasure)

 	
 	labeled_comprehension() (in module dask_image.ndmeasure)

 	laplace() (in module dask_image.ndfilters)

M

 	
 	maximum() (in module dask_image.ndmeasure)

 	maximum_filter() (in module dask_image.ndfilters)

 	maximum_position() (in module dask_image.ndmeasure)

 	mean() (in module dask_image.ndmeasure)

 	
 	median() (in module dask_image.ndmeasure)

 	median_filter() (in module dask_image.ndfilters)

 	minimum() (in module dask_image.ndmeasure)

 	minimum_filter() (in module dask_image.ndfilters)

 	minimum_position() (in module dask_image.ndmeasure)

P

 	
 	percentile_filter() (in module dask_image.ndfilters)

 	
 	prewitt() (in module dask_image.ndfilters)

R

 	
 	rank_filter() (in module dask_image.ndfilters)

S

 	
 	sobel() (in module dask_image.ndfilters)

 	
 	standard_deviation() (in module dask_image.ndmeasure)

 	sum() (in module dask_image.ndmeasure)

U

 	
 	uniform_filter() (in module dask_image.ndfilters)

V

 	
 	variance() (in module dask_image.ndmeasure)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Image processing with Dask Arrays

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 API

 		
 dask_image package

 		
 Subpackages

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.1 (2018-08-31)

 		
 0.1.0 (2018-08-31)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

